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CHAPTER 1 

 

General Introduction 

 

 

1.1 DISSERTATION ORGANIZATION 

 This thesis highlights work performed in the Jeffries-EL group concerning the 

synthesis of new materials for organic electronics. The focus will be on the enhanced 

synthesis of benzobisazoles, their subsequent incorporation into conjugated polymers for 

optoelectronic device fabrication. Chapter 1 is a general introduction that covers 

background information concerning organic semiconductors and their importance. Here 

are discussed details concerning structure-function relationships and device fabrication, 

with a specific focus on the inner workings of transistors, solar cells, and light emitting 

diodes. 

 Chapter 2 is a paper that was published in Organic Letters in 2008 that details the 

synthesis of two isomers of benzobisoxazole. The author of this dissertation performed 

the bulk of the synthetic work and elucidation of the final methodology reported in the 

paper as well a minor portion of the primary text and all of the supporting information. 

Drew Makowski synthesized the co-monomer for the polymer presented at the end of the 

work. Malika Jeffries-EL composed the bulk of the primary text. 

 Chapter 3 is a paper that was published in 2009 in Journal of Organic Chemistry 

concerning the synthesis of a variety of different benzobisthiazoles. The author 

performed most of the experimentation as well as drafting part of the SI and the 

experimental data. Jeremy Intemann synthesized the 1,4-diamino-2,5-benzenedithiol 

bishydrochloride used as a starting material. Malika Jeffries-EL drafted the final version 

of the text and SI. 

 Chapter 4 concerns the synthesis and analysis of benzobisoxazole polymers 

published in Journal of Polymer Science: Part A: Polymer Chemistry in 2010.  The 

synthesis of phenylene containing benzobisoxazoles is covered along with their 

optoelectronic properties. The author of this dissertation performed the majority of 
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synthesis and analytical work along with compiling the supporting information. Drew 

Makowski synthesized the phenylene comonomers, and Tim Mauldin provided thermal 

decomposition and phase change data. Malika Jeffries-EL compiled the final manuscript. 

 Chapter 5 is a paper that was published in 2011 in Physical Chemistry Chemical 

Physic concerning the synthesis and function of poly(thiophenevinylene-alt-

benzobisoxazole)s in organic solar cells.  This chapter investigates the theoretical 

reasoning behind the quality of the synthesized polymer’s performance in solar cells.  

The author of this dissertation carried out the polymer characterization and the majority 

of the synthesis work. Drew Makowski provided assistance in synthesis.  Kanwar Nalwa 

and Daniel Putnam, working under the guidance of Sumit Chaudhary, fabricated 

photovoltaic devices out of the polymers. Aimee Tomlinson was responsible for 

theoretical calculations, and Malika Jeffries-EL compiled the manuscript. 

 Chapter 6 involves the synthesis of new single-bonded poly(benzobisazole)s.  The 

author of this dissertation performed most of the synthetic and analytical work, wrote the 

supporting information, experimental information, and part of the final manuscript. 

Jeremy Intemann synthesized the fluorene comonomer. Min Cai
 
and Teng Xiao, under 

the guidance of Drs. Joseph and Ruth Shinar produced and characterized the organic light 

emitting diodes from the polymers. Malika Jeffries-EL compiled and submitted the final 

draft of the paper. 

 The work in Chapter 7 involves further application of the benzobisoxazole and 

benzobisthiazole monomers synthesized in Chapter 6. This study explores the synthesis 

and photovoltaic device performance of six new donor/acceptor copolymers made from 

benzobisazole acceptor monomers and two donor comonomers. All of the synthetic work 

and analytical characterization of the polymers along was performed by the author. John 

Carr and Yuxing Chen, under the guidance of Sumit Chaudhary, fabricated organic solar 

cells from the polymers. Malika Jeffries-EL provided general conclusions and guidance. 

 Finally, Chapter 8 draws some general conclusions and discusses future synthesis 

and applications of benzobisazole containing conjugated organic molecules. 
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1.2 INTRODUCTION TO ORGANIC ELECTRONICS 

 Organic semiconductors (OSCs) have attracted much attention over the past few 

decades owing to their unique properties, which allow them to be included in a host of 

electronic device applications. There have been reports of conductivity in organic 

compounds as early as the 1950s.
1-4

 However, the first major breakthroughs did not occur 

until the 1970s. In 2000, Alan J. Heeger, Alan G. McDiarmid and Hideki Shirakawa were 

awarded the Nobel Prize for their research of poly(acetylene) in the late 1970s, 

pioneering work in the field of organic electronics.
5, 6

 Since then, OSCs have been 

incorporated into any number of various electronic devices, including organic light-

emitting diodes (OLEDs),
7, 8

 lasers,
9
 organic photovoltaics (OPVs),

10, 11
 non-linear optics 

(NLOs),
12

 organic field effect transistors (OFETs),
10, 13

 batteries,
14, 15

 and sensors,
16, 17

 

some of which have even been developed commercially.
18, 19

 Unfortunately, a major 

barrier to the introduction of organics into these areas has to do with inferior electrical 

properties as compared to traditional inorganic semiconductors. However, the goals of 

OSC technological development are not necessarily to exceed the performance of 

inorganics. Indeed, there is a great deal of promise in using combinations of the two.
20-22

 

OSCs offer new device functionalities (optical transparency, chemical response, 

lightweight) as well as a way to produce electronic materials at a lower cost.
10, 23, 24

  

 Perhaps the most appealing part about using OSCs as opposed to traditional 

inorganic semiconductors comes from the synthetic diversity inherent in organic 

molecules. There are many different ways to alter the properties of OSCs through 

chemical synthesis, making them easily tunable to fit the needs of a device.
25, 26

 

Additionally, most OSCs are cheaper to produce and process than inorganic 

semiconductors.
24

 Whereas inorganics utilize vapor deposition under high vacuum and 

temperatures, many organics can be processed using “soft” techniques such as inkjet 

printing or spray coating allowing for large area and continuous application.
27, 28

 These 

advantages, coupled with a growing interest in OSCs as part of new technology drives 

research in the synthesis of new compounds and the study of their structure and function.  
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1.3 A SHORT INTRODUCTION TO BENZOBISOXAZOLES AND 

BENZOBISTHIAZOLES 

 As such, there is a high demand in the research community for promising new 

materials. This has resulted in the fabrication of a wide variety of materials tailored for 

different applications, some of which can be used in multiple applications. For the most 

part, design of conjugated molecules is generally based around small, functionalized 

polycyclic aromatic systems (e.g., naphthalene, quinoline, fluorene), and then these 

systems are built up as pieces of larger conjugated systems like dyes or polymers.  

 

 

 

Figure 1.1. The top three molecules are the basic benzobisazole units synthesized by the 

author of this thesis. The bottom two polymers are examples of common benzobisazole 

materials. 

 

 This work focuses on the synthesis, analysis, and application of a series of related 

benzobisazoles heterocycles, namely the top three isomers shown in Figure 1.1. Interest 

originated in these compounds as dyes or as antimicrobials, with most of the initial 

synthetic work being accomplished by Osman, et al.
29-34

 Eventually, the Air Force’s 

interest in high tensile, high modulus stable lightweight materials led to the development 

of rigid rod poly(p-phenylene benzobisoxazole) and poly(p-phenylene benzobisthiazole) 

(PBO and PBZT, respectively).
35-41

 It was eventually discovered that, in addition to their 
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excellent mechanical properties, thermal stability, and oxidative stability, these materials 

exhibited interesting optical and electronic processes.
42-45

 The discovery of these 

polymers at this time led to them being among the first conjugated polymers to be well-

studied. 

 It was discovered that PBO and PBZT, being very rigid and planar, both form liquid 

crystalline solutions leading to high ordering in the solid state.
46-48

 This excellent degree 

of order along with the electron deficient benzobisazole heterocycles gives these 

materials n-type conductivity in the solid state.
49-51

 As such, they have been used as 

electron transport and emissive materials in OLEDs with promising results.
51-53

 More 

recently, PBO was used as an absorber for OPVs.
54

 Unfortunately, the polymer delivered 

very poor performance. Other derivatives where the phenylene has been replaced by a 

thiophene,
55-57

 vinylene,
58

 or fluorene,
59

 or others
60-62

 have also been synthesized with 

mixed results. 

 The major issues with the utilization of benzobisazole rigid rod polymers come from 

their synthesis and processing conditions. These polymers require very hot temperatures 

(in excess of 200°C) in highly acidic media poly(phosphoric acid) in order to be 

synthesized and remain soluble after cooling.
43, 63

 Casting these polymers into films also 

requires dissolution in highly acidic media (conc. sulfuric acid, aluminum chloride in 

nitromethane).
63-66

 Once cast, it is then very difficult to remove trace acid, which leads to 

unintended doping. The presence of acidic impurities can hurt performance in organic 

electronic devices by interfering with charge and exciton transport. It should also be 

noted that these harsh conditions are not suitable for synthesizing polymers containing 

the benzo[1,2-d;4,5-d´] bisoxazole unit. The starting material for this isomer decomposes 

when subjected to the aforementioned conditions. 

 As benzobisazole polymers have been shown to be excellent materials in their own 

right, the major goal of the author’s research was to devise methods to produce these 

polymers under milder conditions. In this way, new conjugated materials based on the 

three benzobisazoles in Figure 1.1 have been produced.
67-71

 The use of mild conditions 

and incorporation of solubilizing alkyl chains opens the doors for this material as a useful 

synthon by vastly improving its usability and purity.  
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1.4 CHARACTERISTICS COMMON TO ORGANIC SEMICONDUCTORS  

1.4.1 Basic structural characteristics.  

 From a chemical perspective, there are two primary structural aspects that give rise 

to the properties of OSCs, 1) a conjugated core or backbone and 2) various types 

solubilizing side chains. These two structural elements, controlled by chemical synthesis, 

have a substantial impact on the optoelectronic energy levels, nanoscale morphology, and 

bulk physical characteristics of these materials. The following section will serve to 

review the two common structural aspects and highlight their impact on the basic 

optoelectronic, solid-state and physical properties of OSCs. In this way, a basic 

understanding of the materials can be established before covering the more detailed 

aspects of their operating principles. 

 Some examples of common OSCs may be found in Figure 1.2. Note that there are 

two main structural types of organic semiconductors presented here – conjugated 

polymers (CPs), and small molecules. These are in addition to graphene and its related 

structures (e.g., graphene, carbon nanotubes, pyrene), which are not shown. The chemical 

structures present in the figure represent only a small portion of the overall chemical 

diversity present in this class of materials. One of the advantages of OSCs is the near 

limitless capacity for synthetic design. There are many different ways to tune the 

properties of OSCs through chemical synthesis in order to fit the needs of a device. Since 

chemical structure is what ultimately determines a material’s properties, it is possible to 

design materials with desirable properties through the study of structure-function 

relationships. 
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Figure 1.2 Representative conjugated organic semiconductors and their side chains, R. 

 Conjugation. One primary characteristic of all organic semiconductors is the 

presence of conjugation. It is this conjugation that gives a material its optoelectronic 

properties. The position of electronic energy levels in an OSC determines whether a 

material is more likely to be p-type or n-type dopable, what wavelengths of light are 

absorbed and emitted, and oxidative stability.
6
 Rigid aromatic systems also play a role in 

the morphology of a system through π-stacking interactions. The overlap of π-orbitals in 

the solid-state affects interchain charge transport (and hence bulk electronic properties) as 

well as optical properties  (excimer formation).
72

 

 Conjugation also affects the bulk physical properties of a material, namely thermal 

stability, insolubility, and phase transition temperatures (e.g., liquid crystalline phase 

transition, glass transition, or melting temperature) depending on how strong the stacking 

interactions are and the shape of the molecular system (ordered vs. disordered). As 
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another result of these strong stacking interactions, macromolecular aromatic systems 

tend to be insoluble in most laboratory solvents, making them difficult to use and 

functionalize. All of the above properties can be tuned by changing the presence of 

functionality on and controlling the size and shape of a conjugated system.
72

 

 

 Side Chains. The other primary structural characteristic prevalent in OSCs is the 

presence of side chains (represented as R groups in Figure 1.1). In the same way that 

conjugation serves primarily to give an OSC its semiconducting and optical 

characteristics, side chains primarily serve to modify the solid state morphology and 

physical properties of the conjugated system.  In order to combat solubility issues, 

aromatic cores are synthesized to bear side chains of various lengths, functionalities, and 

levels of branching in order to break up π-stacking through steric bulk and favorable 

interactions with a solvent.
73-75

 It is even possible to synthesize side chains possessing an 

ionic group (e.g., sulfonate or ammonium functional groups) and an OSC can “self-

dope.”
76

 Nevertheless, solubility is still a common problem in the laboratory.  

 In addition to adding solubility, side chains reduce thermal transition temperatures; 

however, they have the same effect on thermal stability. Side chain diversity allows for 

materials to be soluble in different solvents, affecting their processability by altering how 

films form when they dry (drying time, solvent interactions).
77, 78

 In the solid state, the 

conjugated portions of OSCs tend to segregate from the alkyl portions, often giving rise 

to ordered solid state structures and liquid crystalline properties.
79, 80

 In blended films 

containing more than one material, immiscible side chains can be used to control phase 

segregation in the nanoscale morphology.
81, 82

 It is important to note that side chains can 

also negatively impact OSC performance. Particularly bulky side chains can push chains 

apart, reducing π-stacking and hence reducing electrical mobilities within the material. 

 All in all, the combination of these structural motifs - conjugation and side chains – 

affects an OSC on every level – molecular to nanoscale to bulk. By studying how 

molecular structure impacts the optoelectronic, morphological, and physical 

characteristics of OSCs, deductions can be made as to how new structures will function. 

In this way, material research is driven by the study of structure-function relationships 
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and the design of new materials and device architectures that better take advantage of the 

benefits of OSCs. Before moving on to device architectures, the following sections will 

cover the basic  

1.4.2 Optoelectronic Properties 

 
Figure 1.3. Band structure for different materials. 

 

 Semiconductors are in an intermediate state between an insulator and a metal (Figure 

1.3). An insulator is a material with localized electronic structure and a prohibitively 

large bandgap, which is the difference between the lowest unoccupied molecular orbital 

(LUMO) and the highest occupied molecular orbital (HOMO). In other words, insulators 

have very stable structures and are relatively difficult to oxidize or reduce. Metals, on the 

other hand, have no bandgap, but rather possess partially filled bands. As such, electrons 

in metals are free to move about (completely delocalized) and are referred to as being a 

gas of electrons among a background of positive charge formed by atomic nuclei. 

Semiconductors are then materials possessing a narrow bandgap between the highest 

occupied states in the valence band and the lowest unoccupied states in the conduction 

band. These bands enable semiconductors to conduct electricity when charge carriers are 
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introduced either thermally, electrochemically, or optically.
83

 

 

 Origin of Semiconducting Properties. As previously stated, conjugation is what 

gives rise to the semiconducting and absorptive/emissive properties of OSCs. CPs, in 

particular, have greatly extended conjugated systems owing to the large number of repeat 

units produced in their syntheses. Extended conjugation gives rise to two sets of energy 

levels corresponding to the conduction band and valence band of typical inorganic 

semiconductors. 

 

Figure 1.4. The origin of band structure in poly(acetylene). 

 

  Examining the case for poly(acetylene), starting with one ethene monomer unit 

(ethylene gas in this case), there are two energy levels as defined by the linear 

combination of the two atomic, unhybridized p-orbitals – the π-bond (HOMO) and the 

antibonding π*-orbital (LUMO) (Figure 1.4). As more and more vinyl units are added to 

the chain, the number of orbitals involved in the π-system grows until, as a polymer, the 

orbital structure begins to resemble the analogous band structure of inorganic 

semiconductors.
5, 84

 For CPs, there are a set number of repeat units referred to as the 
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effective conjugation length that defines the point at which adding additional repeat units 

no longer affects the band structure of the material.
85-87

 The HOMO and LUMO 

correspond to the top of the valence band and bottom of the conduction band, 

respectively. Assuming a repeat unit of (-CH-)x, these energy levels should converge to 

resemble the half-filled orbitals of metallic conductors, yet they do not. The energy is 

split due to Peierl’s distortion, arising from the alternation of double and single bonds, 

and the repeat unit is better approximated as (-CH=CH-)x.
88, 89

 The empty space in 

between those levels is referred to as the bandgap (1.5 eV for poly(acetylene)), with the 

Fermi level of the material sitting halfway between the two. Although there are 

similarities between the two, inorganic bands and organic “bands” do not conduct charge 

or interact with light in the same fashion.
90

 

 

Figure 1.5. Conductivities of common materials.
84
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 In fact, semiconductors do not conduct in their native states, instead, free charge 

carriers must be introduced through doping. Doping in OSCs has led to conductivities 

approaching those of metals (Figure 1.5). Currently, the highest conductivity reported for 

an OSC is for stretch aligned chains of poly(acetylene) at approximately 80 kS/cm.
91

 

Typical values for undoped CPs are much lower, ranging from about 10
-9

 to 10
-4

 S/cm.
84

 

Conductivity (σ) in CPs is defined by the relation: 

σ = neμe + peμh 

where n and p are the number of charge carriers (electrons or holes, respectively), e is the 

elementary charge in Coulombs, and μe and μh represent the mobilities of holes and 

electrons. The number of free charge carriers is affected by the doping density, while the 

mobility is affected by the mechanism of charge transport, the number and density of trap 

states, and the solid-state morphology. 
92

 

 

Figure 1.6. Examples of p-type and n-type conjugated systems. Many of these can 

commonly be found as monomer units in CPs. 

                  Donor (p-type)          vs.    Acceptor (n-type) 
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 There are two types of charge carriers in OSCs – electrons and holes. Determining 

whether a material is better at moving holes or electrons depends on how deep or shallow 

the HOMO and LUMO are. This is directly related to how well the organic structure is 

able to stabilize a cation or anion. Although there are no strict rules governing which 

material serves which function in a device, it is convenient to classify them into one of 

two categories – n-type and p-type – based upon whether it is better at conducting 

electrons or holes, respectively. In general, electron poor structures have lower LUMO 

values, while electron rich structures have higher HOMO values (Figure 1.6).
26, 93

 If the 

HOMO level is too high, it can impart oxidative instability on the material, especially in 

an oxygen rich atmosphere such as ours. 

 Dependent on the device, these properties can be tuned to suit the particular 

application for which they are designed.
94-96

 The HOMO and LUMO levels can be 

measured by voltammetric methods or through ultraviolet photoelectron spectroscopy. 

Knowing the positions of the energy levels allows for an understanding of how electrons 

will move in a system once it is pushed out of equilibrium into and excited state. The next 

section seeks to develop an understanding of how doping produces these excited states 

and how they relate to organic structure before describing how structure impacts charge 

transport and mobility. 

 

 Doping and Excited State Species. In silicon-based semiconductors, substitution is 

the primary method for doping wherein a Si atom in a crystal lattice is replaced with 

another element. This introduces new, allowed energy states within the band gap 

dependent on whether the dopant creates excess negative (n-type) or positive (p-type) 

charge carriers (electrons and holes, respectively).
97

 For CPs, substitution doping does 

not result in new energy states due to bonding interactions; it merely results in the 

creation of new bands due to the linear combination of atomic orbitals. The incorporation 

of heteroatoms therefore serves to modify HOMO/LUMO values and solid-state structure 

(an incidentally useful property), but does not result in effective doping.
72

 

 Instead of direct substitution, doping in CPs can be done electrochemically, either 
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through the incorporation of chemical oxidants (p-type) or reductants in the film (n-type), 

or through the application of an electrical potential. By measuring the potential required 

to oxidize or reduce a material, one can deduce the positions of the HOMO and LUMO 

levels, respectively, relative to vacuum.
98, 99

 Free charge carriers may also be introduced 

thermally (from excited states close to the conduction band edge, introduced in the next 

paragraph) and photochemically by exciting electrons into the conduction band directly 

through the absorption of photons. There are two factors to consider when doping – the 

appearance of new, excited electronic states within the bandgap region (which may or 

may not be occupied) and the physical reorganization of the structure through resonance 

to accommodate these new energy states.
84, 100-102

 

 

Figure 1.7. Degenerate states of poly(acetylene) (left) and non-degenerate states of 

poly(p-phenylene) (right).
84

 

 

 The consequences of doping on the electronic structure depend on the degeneracy of 

the ground state.  For poly(acetylene), there are two distinct resonance forms (A and B) 

of equal energy (Figure 1.7). An excited state, known as a soliton, serves as the boundary 

between the two degenerate phases.
100

 Solitons are formed in soliton/antisoliton pairs 

which can annihilate upon recombination. Theoretical calculations have shown that the 

phase change from A to B is not abrupt, and instead the excited state is strongly coupled 

to the lattice and delocalized over approximately seven carbons.
103

 Solitons can also be 

negatively or positively charged when they are formed.
72, 101

 These solitons result in the 

creation of a new subgap energy level (Figure 1.8). The occupancy of this new energy 
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level changes the position of the Fermi level and opens up new optically allowed 

transitions in the NIR range, altering the absorption spectrum of the CP.
104

 It is also 

easier to thermally excite electrons when the doping density is high enough. Because of 

the degeneracy of the ground state and isolated nature of solitons, only one subgap 

energy level is created per soliton.
72

 

 

 

Figure 1.8. A positive soliton (left), neutral solitons (middle), and negative soliton (right) 

with corresponding charge and spin values. 

 

  However, it is the case that the great majority CPs do not have degenerate ground 

states. As an example, poly(para-phenylene) (Figure 1.7) possesses two resonance forms 

– benzenoid (low energy, aromatic) and quinoid (high energy, aromaticity is broken). 

Because of the non-degenerate ground state, isolated defect domains like solitons are 

energetically unfavorable as the quinoidal state is energetically unfavorable; a boundary 

between two degenerate states only exists in the close proximity of another defect. 

Instead of solitons, doping in CPs is described by polaron or bipolaron states. 
88, 100

 

Polarons are essentially radical cations (positive polarons) or radical anions (negative 

polaron) that are stabilized by resonance structure. Bipolarons are the same thing except 

that they consist of two positive charges (positive bipolaron) or two negative charges 

(negative bipolaron) closely bound. Polarons and bipolarons can be described as a 
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combination of two solitons (Figure 1.9). Said another way, a polaron is its own bound 

soliton/anti-soliton pair since the isolated soliton domains cannot exist.
72, 89, 100, 105

  

 

 

Figure 1.9. Depiction of a positive and negative polaron with the corresponding 

quinoidal structures to the right. 

 

 The formation of polarons and bipolarons results in the creation of two midgap states 

close to the band edges – one bonding, one anti-bonding.
100, 106, 107

 Theoretical studies 

have shown that polarons, like solitons, are delocalized and stabilized by resonance 

across several polymer repeat units. Just as in solitons, these new states open up new 

optical transitions, and, in heavily doped cases, the material begins to take on conductive 

properties. Unlike the case with solitons, however, the formation of two electronic states 

indicates that polarons are more coupled to structural alteration than solitons. In addition, 

the neutral excited state polaron is referred to as an exciton. A molecular exciton is a 
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stable excited state that is fundamentally different than just a neutral polaron. 

 

Figure 1.10. Depiction of the absorbances of some common conjugated materials in 

comparison to the solar spectrum. The amount of light absorbed is directly proportional 

to the amount of current generation in OPVs.
108

 

 

 Conjugated materials tend to have very high extinction coefficients (on the order of 

10
5
 cm·M

-1
), and as a result, only thin films on the order of 100 nm are needed to absorb 

a large fraction of incident light (Figure 1.10).
108

 When a photon with at least the energy 

of the bandgap is absorbed, it results in the formation of a bound electron-hole quasi-

particle known as an exciton. Excitons may also be formed in organic molecules through 

polarized charge injection as occurs in OLEDs and through energy transfer processes 

(e.g., Förster resonance energy transfer).
102, 109

 These neutral species are a fundamental 

aspect of semiconductors and central to the operation of both OLEDs and OPVs. 

 In inorganic semiconductors, weakly bound, Wannier excitons are formed that 

dissociate easily into free charge carriers in the presence of an applied field (Figure 1.11). 

This is because inorganic semiconductors are better at screening electric fields. Wannier 

excitons are not tightly bound, typically around 0.01 eV, and can be overcome by thermal 

energy at room temperature (kT~.026 eV). 
92, 110

 In organic molecules, however, Frenkel 

or molecular excitons are formed due to the relatively tight binding carbon exerts over its 

electrons. A molecular exciton’s binding energy can be in excess of 0.5 eV, making them 

a relatively stable excited state.
92, 111, 112
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Figure 1.11. A diagram describing the differences and similarities of Wannier and 

Frenkel excitons.
92

 

 

 The fate of an exciton depends on its local environment. Excitons are able to migrate 

along polymer chains, but as a neutral particle, they do not move under the influence of 

electric fields, but rather move under the effect of decreasing gap energy states. 

Unfortunately, little is actually known about exciton migration in CPs. Typical exciton 

diffusion lengths are on the order of 10 nm for most CPs in the solid state. Excitons in 

solution phase polymers have better exciton transport than in the solid state.
113

 When an 

exciton comes into close proximity (sub-nanometer to nanometer) of a change in energy 

levels, there is a chance for charge or energy transfer.
102, 114

 Without the influence of a 

separating potential, excitons can become trapped and will decay either thermally (non-

radiatively) or via luminescence. Exciton quenching by thermal degradation is generally 

something to be avoided in devices. The fraction of luminescence or charge transfer 

events that occur per excitation event are referred to by their quantum efficiencies. High 
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luminescence quantum efficiencies in the solid state are desirable for the production of 

OLEDs,
115

 whereas the opposite is true of OPVs. In OPVs higher quantum efficiencies 

associated with exciton migration and dissociation are desired.
116

  

 The structurally coupled nature of excited states essentially determines how charge 

and energy is transported in CPs. The appearance of new subgap energy states and 

consequential altering of the Fermi level of the material are important considerations 

when designing devices.
105,

 
106

 Although there is still debate as to the exact nature of the 

excited states of CPs, especially excitons, what is important to consider from the 

perspective of a synthetic chemist is how basic polaronic band structure is involved in 

charge transport mechanisms and how changing the chemical structure affects these 

charge transfer mechanisms and hence the mobility of charges and energy. 

1.4.3 Morphology and Mobility  

 Charge Transport and Mobility. Charge transport in OSCs, in general, is 

determined by a charge hopping mechanism. Charge hopping is an alternative transport 

mechanism to band transport. Instead of a very large charge delocalization that would 

allow the charge to move to another location through a band, many of the charges in CPs 

must “hop” from one chain to the next.
117

 Charge hopping is indicated by relatively low 

mobilities. Once polarons are formed, they travel according to the direction of the electric 

field (bulk and local) until they meet a defect or trap. Charge hopping occurs because CPs 

are packed chains of organic molecules, covalently bound in only one dimension, of 

finite length, and separated from one another by insulating side chains and empty space. 

Therefore, the direction of travel and the 3-dimensional arrangements of chains play 

important roles in transport. Traps and defects can be chemical dopants, impurities, kinks 

in the polymer chain, chain termination (or end group), or can even be an inherent part of 

the polymer (i.e., the organic electronic structure is not conducive to charge transport). 

Additionally, the polaronic nature of charges means that stabilization of the quinoidal 

form through resonance structure is important to maintaining delocalization and good 

mobility. 

 Mobility can be variable by several orders of magnitude depending on whether 

charges are traveling parallel or perpendicular to the substrate (depending on the direction 
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of the field).
118

 Charges moving parallel to the substrate tend to move along polymer 

chains, whereas charges moving perpendicular must continually hop to new chains. CP 

chains can also be oriented face on with the surface or edge on, although this is possible 

to control to a degree by using surface treatments.
119, 120

 The packing at the surface sets 

up nucleation and therefore the packing for the rest of the thin film (a great majority of 

studies and devices focus on films ~50-100 nm in thickness). As a result of this 

anisotropic charge transport, it is important to make mobility comparisons using methods 

of measurement that match with the direction of charge transport in a device. For 

example, organic solar cells or light emitting diodes are constructed with a sandwich type 

structure where the charges move orthogonal to the surface, whereas in a transistor, they 

move parallel (Figure 1.12). It is just as important to use a method of mobility 

measurement that best mimics the direction of charge travel in a device for which the CP 

is being considered. Even so, correlations between mobility and device performance 

(especially in blend devices) are not always clear as this area of research is still 

developing.  

 

Figure 1.12. Examples of devices where the charge moves perpendicular to the surface 

(left, organic solar cell) or parallel (right, field effect transistor). 

 

 One of the major factors influencing charge transport is solid-state packing. Closer 

co-facial distances in adjacent CP chains allow for greater π-orbital overlap. The 

increased wavefunction mixing is similar to what is seen in the formation of stable 
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excimers.
72, 90, 121

 The mixing creates new subgap energy states that allow sharing of the 

polaron, leading to increased mobility. Good indicators of ordered packing of CPs in thin 

films are red-shifted absorption and fluorescence spectra as compared to those in 

solution. This can be seen when bulky branched side chains are used to impart better 

solubility but have the effect of decreasing mobility due to packing disruption. It is also 

why highly organized molecular crystals like pentacene or copper phthalocyanine have 

some of the highest mobilities of OSCs.
122, 123

 

 

Figure 1.13. An illustration of the nature of regioregular packing found in poly(3-

hexylthiophene) films. 

 

 In general, highly ordered, more crystalline systems tend to have the best charge 

transport, and researchers design systems to exploit this. Perhaps the largest impact on 

structural morphology is the organization of side chains in the solid state; however, this is 

mostly dependent on specific systems.
124, 125

 Regioregularity is ordered solid-state 

structuring wherein adjacent monomer units are all oriented in the same direction (Figure 

1.13). When polymers can adopt a regioregular conformation, it results in better packing 

as well as helping to prevent twists in the polymer chain.
126-132

 Twists in the polymer 

chain break up conjugation by decreasing the π-overlap of adjacent monomer repeat 

units. This results in a defect and a widening of the bandgap, affecting both optical 
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absorption and charge mobility.
133-135

 Even if polymers are not regioregular, designing 

them in order to minimize steric interaction between adjacent repeat units ensures better 

charge transfer characteristics.
136-138

 One way to do this is to lock rings together to form 

ladder-type structures or multicyclic ring systems (e.g. benzobisoxazole
51

, 

dithienosilole,
139-141

 dithienopyrrole
137

), preventing twisting of adjacent repeat units, 

although this can be difficult to do with CPs, there are some examples in the literature, 

nonetheless.
142-144

 Additionally, higher molecular weight polymer chains are desirable as 

they offer longer paths for charges to take.
129, 137, 145-147

 Interestingly, longer chains do not 

pack as well into highly ordered domains with well-defined phase boundaries, but this 

also means that charges are less likely to be trapped at the phase boundaries and are able 

to better migrate in the bulk of the material.
129

 

 

     

Figure 1.14. The stabilization of the quinoidal structure leads to lower bandgaps. This 

can be done through aromatization effects(left) or through the use of alternating DA units 

(right).
26

 

 

 Inherent barriers to structural reorganization once charge is injected can impact the 

mobility.
102

 Resonance stabilization of the quinoidal structure to minimize reorganization 

energy is then a desired characteristic. The adoption of the quinoidal form results in 

breaking of aromaticity, but also an increase in the double bond nature of bonds that were 

originally single bonds and vice versa. Therefore, stabilization of the quinoidal structure 
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results in increased stiffness of the polymer chain, exhibiting similar utility to ladder 

structure (Figure 1.14).
26, 148

 The naphtothiophenes in the figure possess ortho-quinoidal 

benzene units that aromatize when excited. Depending on whether the charge carrier is a 

hole or electron, resonance stabilization can also be had through cation (alkoxy, amino, 

silyl) or anion (carbonyl, imino, nitro) stabilizing functionality, respectively. The use of 

functional groups in turn tunes the respective HOMO and LUMO levels.
149-152

 

Stabilization of the quinoidal form can also be accomplished through alternating donor-

acceptor (DA) architecture. It is often the case for these types of systems that the HOMO 

resides on the donor portion of the molecule whereas the LUMO resides primarily on the 

acceptor portion.
124

 Although the quinoidal form is stabilized for DA systems, they can 

have unprecedented effects of the mobility of electrons or holes, increasing the mobility 

of one, while decreasing the mobility of the other.
151-153

  Incidentally, it should also be 

noted that stabilization of the quinoidal form also results in a decreased bandgap by both 

lowering the LUMO as well as increasing the HOMO, exhibiting an increasing tendency 

to stabilize both holes and electrons.
106, 148

 

 Besides the impact of the chemical structure, the process of casting and forming a 

solid state film can greatly impact the morphology. Various mixtures of solvents and 

additives can drastically affect device performances, as can ratios of components in blend 

systems.
154, 155

 After a film is cast, annealing techniques can be used. Annealing involves 

heating polymer chains past their glass transition temperatures and allowing them to 

restructure themselves upon cooling.
156

 Solvent annealing may also be used where a film 

(possibly heated) is exposed to solvent to partially redissolve the chains and allow them 

to restructure themselves.
157

 In addition, other materials (e.g., other CPs, TiO2, fullerene) 

can also have an impact on the nanoscale morphology. Templating and nanolithography 

(using lasers or stamps, for example) can also be used in order to grant some type of 

structural order to a system.
14, 158

 

 Doping, on the other hand, can increase disorder in the system.
159

 Although 

conductivity may be increased through the introduction of more charge carriers, the 

reordering of the system around the dopants can decrease the prevalence of ordered solid-

state structures that improve the mobility.
160, 161

 More trap states and deeper trap states 
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reduce mobility. Impurities produced during chemical synthesis can act as dopants, and 

should be removed before analyzing or using the material.
162, 163

 Usually, soxhlet 

purification is able to remove these impurities. Although not technically a chemical 

dopant or impurity, the end groups on CPs can act as trap sites.
164

 For example, polymers 

made using Suzuki or Stille couplings can terminate with boronic esters or 

trialkylstannanes, respectively, which can act as impurities of sorts, distorting the 

potential at the end of the polymer chain. Fortunately, end-capping the polymer at the 

final stages of polymerization can be done by reaction with aryl halides (I, Br) followed 

by an aryl boronic acid.
165, 166

 

 When considering device applications, controlling morphology is crucial to making 

high-efficiency devices. The function of morphology is to set up the chemicals 

(donor/acceptor, organic/inorganic) in such a way that desirable absorption, charge 

transfer and/or energy transfer events take place with as high efficiency as possible. 

Understanding what gives a material good mobility allows better molecular design. 

Although mobility is generally desirable, there are, however, other factors that must be 

taken into account before a good material is discovered. For example, it has been shown 

that branched side chains can actually increase the open circuit voltage (Voc) for OPVs, 

boosting power conversion efficiency.
167

 This illustrates the fact that there must also be 

balance among desirable properties in order to achieve optimal device characteristics. 
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1.5 CONCLUSIONS 

 Taking the above factors into consideration, there are four main determinants as to 

how well an OSC will perform in a device: 

 Stability 

o Oxidative 

o Thermal 

 Properly aligned energy levels 

o With other components 

o To give absorption or luminescence 

 Good thin film morphological characteristics 

o OPV vs. OLED 

o Able to carry charge effectively 

 Purity and Defects 

o End groups 

o Dopants 

 

 In summary, CPs, in general, form polaronic states when excited, either through 

chemical doping, optical excitation, or charge/energy transfer processes. This causes the 

appearance of subgap electronic states and the reorganization of the chemical bonding to 

incorporate the new states. The relative energies of excited states affects the position of 

the Fermi level. The Fermi level of the semiconductor is related to the way a material 

functions (i.e., electron transport or hole transport) in an optoelectronic application when 

combined with other materials to make a device. Ultimately, the chemical structure of the 

material is what determines the optoelectronic properties – the solid-state structure, the 

values of the energy levels and the band structure before and after doping.  
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2.1 ABSTRACT 

N

O

OH
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2 HCl

N
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R R
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OO
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R R

HO

H2N
RC(OEt)3 (3 equiv), py (2 equiv)

DMSO, 60 0C

or

10 examples, 40- 92% yields  
 

 2,6-Disubstituted benzobisoxazoles have been synthesized by a highly efficient 

reaction of diaminobenzene diols with various orthoesters.The scope of this new reaction 

for the synthesis of substituted benzobisoxazoles has been investigated using four 

different orthoesters. The utility of these compounds as building blocks for the synthesis 

of conjugated polymers is demonstrated. 

2.2 INTRODUCTION 

 Conjugated polymers and oligomers are of interest for use as organic semiconductors 

in applications such as thin-film  transistors (TFTs),
1
 light-emitting diodes (OLEDs),

2
 and 

photovoltaic cells (PVCs).
3
 While there are a large number of π-conjugated small 

molecules, oligomers, and polymers which have been reported in the literature, the design 

and synthesis of new π-conjugated organic materials remains an important area of 

research. Of particular interest is the creation of materials with good electron transport 
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properties (n-type), which are less abundant in the literature than those with hole 

transport (p-type) properties.
4
 n-type materials with efficient electron transport are 

essential for improving the performance of TFTs, OLEDs, and PVCs and to enable other 

cost-effective applications such as complementary circuits.
5 
 

 We are interested in developing benzobisoxazoles for their use as building blocks for 

novel organic semiconductors because conjugated small molecules and polymers based 

on benzobisoxazoles are well suited for use in organic semiconducting applications. 

These materials combine efficient electron transport, photoluminescence, and third-order 

nonlinear optical properties
6
 with excellent mechanical strength and thermal stability.

7
 

Unfortunately, the fused benzobisoxazole ring system, the rodlike conformation of the 

resulting polymers, and efficient π-stacking between chains render fully conjugated 

poly(benzobisoxazoles) (PBOs) insoluble in aprotic solvents. As a result, PBOs are 

typically processed from acidic solvents, such as Lewis acid/nitromethane, 

methanesulfonic acid, trifluoromethanesulfonic acid, and sulfuric acid,8 which are 

impractical for use in device manufacturing.  

N

O
H2N

HO

OH

NH2

2 HCl
N

O
R R

N

OHO

H2N

OH

NH2

2 HCl
RC(OEt)3

O

N

R R

1

2a-e

3a-e

RC(OEt)3 2a-e

a: R = H, b: R = CH3, c: R = CH2Br, d: R = C C TMS

4 5a-e

, e: R = CH2Cl  

Scheme 1. Synthesis of 2,6-Disubstituted Benzobisoxazoles 

 Generally, the solubility of π-conjugated materials can be improved through 

structural modifcation. In the case of small molecules and polymers containing the 

benzobisoxazole moiety, the synthesis is achieved by the high-temperature condensation 

of bis-o-aminophenols and aromatic diacids in the melt, in polyphosphoric acid (PPA), in 

phosphorus pentoxide/methanesulfonic acid, or in trimethylsilyl polyphosphate (PPSE)/o-

dichlorobenzene.
9
 These conditions are rather harsh, thereby limiting the types of 

substituents that can be incorporated into the benzobisoxazole moiety. In this 

contribution, we report the synthesis of optoelectronic building blocks based on 

benzo[1,2-d;4,5-d´] bisoxazole (trans-BBO) (3a-e) and benzo[1,2-d;5,4-d´] bisoxazole 
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(cis-BBO) (5a-e) by the reaction of various orthoesters (2a-e) with 2,5-

diaminohydroquinone (DAHQ) (1) and 4,6-diaminoresorcinol (DAR) (4), respectively 

(Scheme 1). In all cases, the target compounds have been obtained cleanly and in high 

yield. Using our strategy, we have synthesized several building blocks suitable for the 

synthesis of benzobisoxazole monomers. 

2.3 RESULTS AND DISCUSSION 

 We rationalized that orthoesters could be used for the synthesis of benzobisoxazoles 

since they have been used for the synthesis of benzimidazoles, benzoxazoles, and 

benzothiazoles.
10

 The standard reaction conditions use 10 equiv of orthoester, which 

serves as both a reagent and the solvent, a catalytic amount of acid, and temperatures of 

130 °C. Using the reaction of triethyl orthoformate and DAHQ as our model system, we 

first explored catalyst-free conditions, relying on the acid coordinated with the diamino-

diol to catalyze the reaction (entry 1). This yielded trans-BBO 3a in 61% yield. When the 

reaction was performed under traditional conditions, using catalytic amounts of H2SO4, 

the target compound 3a was obtained in 65% yield (entry 3). While the yields were 

moderate in both cases, the product was contaminated with a significant amount of dark 

red oxidation products, complicating purification.  

 Due to the tendency of DAHQ (1) and DAR (4) to decompose at higher 

temperatures, we needed to reduce the reaction temperature. Furthermore, the use of such 

a large excess of orthoester is undesirable since the substituted orthoesters are costly. To 

reduce the need for excess orthoester, we used DMSO as a cosolvent since it can dissolve 

both DAHQ and DAR. We then explored the use of rare earth metal triflates as catalysts 

since they have been demonstrated to reduce reaction times and increase yields when 

used instead of traditional Lewis acid catalysts.
11

 In the case of our model reaction, we 

found several effective catalysts as shown in Table 1. Interestingly, the Lewis acid 

cataysts do not work in the absence of the DMSO solvent. With the exception of 

Bi(OTf)3 and Hf(OTf)3, all of the metal triflates gave improved yields when compared to 

the traditional acid catalysts. The low reactivity of Bi(III) and Hf(III) may be attributed to 

their larger ionic radii.
11 
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N

OH2N

HO

OH

NH2

2 HCl

N

O

H H

1 3a

HC(OEt)3 
catalyst or co-solvent

DMSO

 
 

entry solvent catalyst/ 

cosolvent 

temp 

(ºC) 

time 

(h) 

yield
a
 

(%) 

1 none none 130 5 61 

2 DMSO none 60 2.5 64 

3 none H2SO4 130 2.5 65 

4 DMSO H2SO4 130 1 64 

5 DMSO PTSA 110 4 71 

6 DMSO Bi(OTf)3 60 4 0 

7 DMSO Hf(OTf)3 60 4 36 

8 DMSO Eu(OTf)3 60 4 82 

9 DMSO Sc(OTf)3 60 4 82 

10 DMSO Y(OTf)3 60 4 81 

11 none Yb(OTf)3 60 4 0 

12 DMSO Yb(OTf)3 60 4 75 

13 DMSO Y(OTf)3/Py 60 1 92
b
 

14 DMSO Pyridine 45 1 78
 b
 

 

aStandard reaction conditions: substrate 1 M in DMSO, 10 equiv of ortho ester, 5 mol % catalyst, or py 2 equiv a 
Isolated yields. b 3 equiv of ortho ester. 

 

Table 1. Investigation of the Effect of Catalyst on the Reaction of DAHQ (1) with 

Triethyl Orthoformate 2a
a
 

 

 Unfortunately, we found that even with the addition of the DMSO the reaction yields 

significantly decreased when less than 10 equiv of orthoester was used. Moreover, we 

found that when the optimium reaction conditions, which were established for our model 

reactions, were used with ethyl orthobromoacetate
12a

 (2c) and trimethylsilyl ethyl 
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orthopropiolate
12b

 (2d), the yields of the target BBOs decreased. We rationalized that the 

substituted orthoesters were unstable to the current reaction conditions and set out to 

further improve our reaction conditions. We explored the use of pyridine as a cosolvent 

with DMSO since it has been reported that it improved the yields of orthoester 

reactions.
13

 

 This modification was fortuitous, and we were able to reduce the reaction 

temperatures and times while increasing the reaction yields. While it was previously 

reported that the addition of pyridine stabilizes the DMSO, we believe that this 

improvement is a result of the removal of the acid coordinated with the DAHQ and DAR, 

increasing their reactivity and preventing protic acid catalyzed decomposition of the 

orthoesters. Using yttrium triflate, the pure product 3a was obtained in 91% yield after 

the addition of water to the reaction mixture and simple filtration (entry 13). In the 

absence of the catalyst, the product was obtained in 78% yield (entry 14). The advantages 

of this method are the fact that the reaction occurred at a lower temperature, preventing 

the formation of side products, and the desired product can be precipitated out from the 

reaction mixture, allowing for easy purification. 

 On the basis of the model reactions, we have determined the optimum reaction 

conditions to be: substrate 1 M in DMSO, 2 equiv of pyridine, 3 equiv of orthoester, and 

5% Y(OTf)3 for DAHQ or La(OTf)3 for DAR. Using these conditions, we set out to 

investigate the scope of the reaction with respect to the orthoester (Table 2). We found 

that triethyl orthoacetate (2b) and trimethylsilyl ethyl orthopropiolate
12b

 (2d) could be 

employed to yield the corresponding BBOs in good yield. However, the reaction of 

triethyl orthobromoacetate (2c) only worked under traditional conditions, in the case of 

the transderivative, and failed to yield product in the case of the cis derivative. The 

inability to synthesize benzobisoxazole 3c using 2c and our modified reaction conditions 

is most likely due to the competing side reaction of the alkyl bromide of the orthoester 

with DMSO.
14

 Thus, we explored the use of triethyl orthochloroacetate (2e),
12c

 which is 

less prone to side reactions and gives good results using our reaction conditions. In all 

cases, the products can be purified by simple recrystallization, and this method can easily 

be scaled up to multigram quantities. Thus, by utilizing the corresponding orthoesters, we 
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can incorporate methyl, bromomethyl, chloromethyl, and alkynyl groups into the   O’s. 

Compounds containing the latter three groups cannot be prepared using traditional 

approaches. Moreover, direct bromination of 3b or 5b also fails to yield 3c and 5c. 

 

N

ON

O
R R

N

OO

N
R R

3b-e

5a-e

RC(OEt)3, X(OTf)3

DMSO, Pyridine

H2N

HO

OH

NH2

2 HCl

1

NH

OH

H2N

HO

4

RC(OEt)3, X(OTf)3

DMSO, Pyridine
2 HCl

 

diamino diol ortho ester benzobisoxazole  % yield
a
  

1 2b N

ON

O
H3C CH3

3b  
86 

1 2c N

ON

O
BrH2C CH2Br

3c  
48

b
 

1 2d N

ON

O
TMSTMS

3d  
67 

1 2e N

ON

O
ClH2C CH2Cl

3e  
40 

4 2a O

NN

O
H H

5a  
91 

4 2b O

NN

O
H3C CH3

5b  
83 

4 2c O

NN

O
BrH2C CH2Br

5c  
0 

4 2d O

NN

O
TMSTMS

5d  
40 

4 2e O

NN

O
ClH2C CH2Cl

5e  
73 

a Isolated yields. b Synthesized using standard conditions. 
 

Table 2. Reaction of 1 and 4 With Various Orthoesters 2b–e 
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N

O N

O

3c or 3e
P(OEt)3

Reflux

3g

N

ON

O
OHC CHO

3f

3b
SeO2

EtOH, reflux

(EtO)2P

P(OEt)2

O

O

15-20% yield

88% yield
 

Scheme 2. Synthesis of Benzobisoxazole Monomers 

 

7

N

ON

O

OC12H25

C12H25O

n
N

ON

O

3g

P(OEt)2

(EtO)2P

O

O

OC12H25

C12H25O

CHOOHC

6

+ t-BuOK

THF, reflux

86% yield  

Scheme 3. Synthesis of Benzobisoxazole Polymer 7 

 

 To demonstrate the utility of the new BBOs as building blocks for the synthesis of 

conjugated polymers, we first attempted the synthesis of monomer 3f, by the oxidation of 

compound 3b (Scheme 2). The reaction yields were very low (15-20%). Thus, we 

explored the synthesis of diphosphonate ester 3g. Monomer 3g can be synthesized by the 

Arbuzov reaction of 3c or 3e and triethylphosphite. The polymerization of monomer 3g 

with 2,5-didodecyloxybenzaldehyde 6
15

 by a Horner-Wadsworth-Emmons (HWE) 

olefination reaction produced a red polymer in 86% yield (Scheme 3). The resultant 

polymer was soluble in THF and chloroform, and the structure of the polymer was 

verified by 
1
H NMR spectroscopy. Gel permeation chromatography (GPC) of the 

polymer showed a monomodal distribution with number average molecular weight (Mn) 

of 5672, and a PDI of 1.77, which corresponds to a number averaged degree of 

polymerization of approximately 8. We measured the emission and absorption spectra of 

the polymer in solution and found that the absorption maximum is 476 nm. The polymer 

exibits green fluorescence with an emission maximum at 515 nm, which is blue-shifted 

from the photoluminescence of MEHPPV (ca. 600 nm).
16

 This represents the first 

synthesis of a PBO derivative which is soluble in aprotic organic solvents. We are 

currently working to optimize the reaction conditions to obtain a higher molecular weight 

polymer.  
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 In summary, the reaction of orthoesters and DAHQ or DAR affords new 2,6-

disubstituted benzobisoxazoles in good yields. Subsequent reactions can transform these 

compounds into monomers for the synthesis of novel polymers containing the electron-

deficient benzobisoxazole moiety. Future efforts will focus on the synthesis of other 

monomers based on these materials, as well as device construction and evaluation of the 

electronic and optical properties of oligomers and polymers containing the 

benzobisoxazole moiety. 

2.4 EXPERIMENTAL 

 Detailed descriptions of the synthetic and analytic methods are given in the 

Supporting information. 
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2.7 SUPPORTING INFORMATION 

2.7.1 Experimental Section 

 Materials and Equipment. Tetrahydrofuran was dried using an Innovative 

Technologies solvent purification system. Triethyl orthoformate 2a and triethyl 

orthoacetate 2b anhydrous DMSO and anhydrous pyridine were purchased from Aldrich. 

All other compounds were purchased from commercial sources and used without further 

purification. Deuterated solvents were obtained from Cambridge Isotope Laboratories, 

Inc. Nuclear magnetic resonance spectra were obtained on a Varian 400 MHz 

spectrometer (
1
H at 400 MHz and 

13
C at 100 MHz). All samples were referenced 

internally to residual protonated solvent and chemical shifts are given in δ relative to 

CHCl3. High resolution mass spectra were recorded on a Kratos MS50TC double 

focusing magnetic sector mass spectrometer using EI at 70 eV. Melting points were 

obtained using a Melt-temp melting point apparatus. GC-MS analysis was performed on 

a Shimadzu GC17A/ GC-MS QP5000 workstation. The GC column was a fused silica 

capillary column cross-linked with 5% phenylmethylsiloxane and Helium was the carrier 

gas. Gel permeation chromatography (GPC) measurements were performed on a 

Viscotek GPC Max 280 separation module equipped with three 5μm I-gel columns 

connected in series (guard, HMW, MMW and LMW) with a variable λ absorbance UV 
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detector, online viscometer and refractive index detector. Analyses were performed at 35 

°C using THF as the eluent, and the flow rate was 1.0μL/min. Calibration was based on 

polystyrene standards obtained from Viscotek. Fluorescence spectroscopy was performed 

on a Varian Cary Eclipse system and UV-Visible spectroscopy was performed on a 

Shimadzu UV-2101PC system. Both samples were in THF. 

 

O

O

Cl Cl

Cl Cl

O

O

Cl NH2

H2N Cl

H2N

HO

OH

NH2

*2 HCl

NH4OH

2-Methoxyethyl acetate

H2/Pd

H2O

1  

 2,5-diamino-3,6-dichlorobenzoquinone. This compound was prepared in 91% yield 

according to the literature procedure, and used without further purification.
1
  

 

 2,5-diaminohydroquinone bishydrochloride (1).
1
 In a three-neck round bottom 

flask, (19.28 g, 93.61 mmol) of 2,5-diamino-3,6-dichlorobenzoquinone is stirred together 

with 1.2 g of 10% Pd on charcoal in 250 mL of water. To this is added 1 mL concentrated 

HCl. The air is purged by bubbling nitrogen through a gas inlet for 10 min. The gas inlet 

is then switched to hydrogen gas, which is bubbled through the mixture for 3 days at 

room temperature. The solution is then filtered to remove the catalyst and the filtrate is 

immersed in a cold bath (approx -30°C). 300 mL concentrated HCl is added to the 

solution and white solids begin to form in the flask. Once all the HCl has been added, the 

solution is placed in the freezer for several hours. When removed, the solids are filtered 

and washed with 50 mL cold ethanol followed by 200 mL diethyl ether. The solids were 

dried under vacuum to yield 16.47 g (82%) of 2,5-diaminohydroquinone 

bishydrochloride. Melting point: >260°C, with gradual darkening.
 1

H NMR (DMSO-d6) δ 

4.45 (bs, 6H), 6.98 (s) 2H; 
13
C NM  δ 112.1, 119.1, 143.6. 
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HO OH

O2N

HO

NO2

OH

H2N

HO

NH2

OH

*2 HCl

HNO3

H2SO4

H2/ Pd

H2O

4  

 4,6-dinitroresorcinol. This compound was prepared in 46% yield according to the 

literature procedure.
2
 
1
H NMR (DMSO-d6) δ 1.3 (very broad, 2H), 6.69 (s, 1H), 8.58(s, 

1H); 
13
C NM  δ 106.5, 126.1, 129.4, 158.7. 

 

 4,6-diaminoresorcinol bishydrochloride (4).
3
 In a three neck round bottom flask, 

20.01 g (100 mmol) 4,6-dinitroresorcinol is suspended in 200 mL water with l.3 g 10% 

Pd on charcoal to which is added 17 mL (210 mmol) concentrated HCl. The solution is 

purged with nitrogen for 10 min before switching to hydrogen. It is stirred for 3 days at 

room temperature. The reaction is then filtered to remove catalyst and the filtrate is 

treated with 300 mL concentrated HCl, added dropwise while being kept cold (approx -

30°C). The pinkish solids are filtered, rinsed with 50 mL cold ethanol followed by 200 

mL diethyl ether. The powder is dried under vacuum to yield 19.59 g (92%) of 4,6-

diaminoresorcinol bishydrochloride. Melting point >260°C, with gradual darkening. 
1
H 

NMR (DMSO-d6) δ 4.5 (s, 6H), 6.68 (s, 1H), 7.31 (s, 1H); 
13
C NM  δ 103.8, 110.1, 

120.1, 152.1. 

 

EtO

OEt

OEt

Br2

Pyridine
EtO

OEt

OEt
Br

2c  

 Triethyl orthobromoacetate 2c. This compound was prepared in 45 % yield 

according to the literature procedure.
4
 The product is distilled under reduced pressure to 

give 3 fractions. The 2
nd

 fraction (110°-115°C), contains the purest product (90% pure by 

GC/MS). 
1
H NMR (CDCl3) δ 1.10 (t, 9H, J=7 Hz), 3.37 (s, 2H), 3.44 (q, 6H, J=7Hz); 

13
C 

NM  δ 15.1, 30.3, 58.0, 112.1. 
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C(OEt)4

TMS MgBr

Et2O
TMS

OEt

OEt

OEt

2d  

 Trimethylsilyl triethyl orthopropiolate 2d. To a solution of ethyl magnesium 

bromide (prepared from reaction of 4.96 g (.204 mol) Mg and 22.23 g (.204 mol) ethyl 

bromide in 55 mL diethyl ether) is added 18.17 g (.185 mol) trimethylsilyl acetylene 

dissolved in 35 mL ether. The reaction is stirred for 1 hr at room temperature, then raised 

to reflux for 15 min before cooling back down to room temperature. Once cooled, a 

solution of 42.70 g tetraethyl orthocarbonate and 35 mL ether is added dropwise. After 

the addition is complete, the reaction is brought to reflux and allowed to stir overnight. 

The reaction is then poured into 300 mL of saturated aqueous NH4Cl, and this is 

extracted four times with 250 mL diethyl ether. The combined ether layers are dried over 

Na2SO4 and the ether is removed by rotary evaporation to give a yellowish orange liquid. 

The liquid is distilled under vacuum from 60°- 65°C to yield 34.82 g (77%) of a colorless 

oil. (95% pure by GC/MS) 
1
H NMR (CDCl3) δ 0.14 (s, 9H), 1.17 (t, 9H), 3.62 (q, 6H); 

13
C NM  δ 0.1, 15.1, 59.1, 89.0, 98.8, 108.6.  

 

EtO

OEt

OEt

NCS
CCl4

EtO

OEt

OEt
Cl

2e  

 Triethyl orthochloroacetate 2e. This compound was prepared in 51% yield (93% 

pure by GC/MS), according to the literature procedure.
5
 
1
H NMR (CDCl3) δ 1.09 (t, 9H, 

J=7 Hz), 3.56 (q, 6H, J=7Hz); 
13
C NM  δ 41.9, 57.9, 112.6. 

2.7.2 Synthesis of Benzobisoxazoles via Orthoester Condensation. 

 General method: A 1 M solution the diamino diol and pyridine (2 eq.) in DMSO is 

added via a syringe to the orthoester (3 eq.) a catalyst (5 mol %) in a round bottom flask. 

The reaction is stirred at 55 ºC for 1 hour and then cooled. The reaction is diluted with 

water and the product collected by filtration. The resultant compounds can be further 

purified by recrystallization. 
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Benzo[1,2-d;4,5-d´]bisoxazole 3a.
6
 Recrystallization from 

benzene/ THF 1:1, afforded the product in 92% yield. Melting 

point 243-245ºC, with gradual darkening. 
1
H NMR (CDCl3) δ 7.96 

(s, 2H), 8.19 (s, 2H); 
13
C NM  δ 102.2, 139.0, 147.8, 154. HRMS 

(EI) calcd for C8H4N2O2 160.02728, found 160.02757, deviation 1.8 ppm. 

 

2,6-dimethyl benzo[1,2-d;4,5-d´]bisoxazole 3b. 

Recrystallization from heptanes afforded the product in 86 % 

yield. Melting point 188-190°C (lit mp. 191 ºC).
6
 

1
H NMR 

(CDCl3) δ 2.65 (s, 6H), 7.68 (s, 2H); 
13
C NM  δ 15.0, 100.4, 139.3, 148.5, 165.2. HRMS 

(EI) calcd for C10H8N2O2 188.05858, found 188.05889, deviation 1.7 ppm. 

 

2,6-(bis bromomethyl) benzo[1,2-d;4,5-d´]bisoxazole 3c. 

Prepared using 10 equiv. of ortho ester, and 1 drop of 

H2SO4. Recrystallization from MeOH/H2O, afforded the 

product in 48% yield. Melting point 153-155ºC. 
1
H NMR 

(Acetone-d6) δ 4.86 (s, 4H), 8.02 (s, 2H); 
13
C NM  δ 21.2, 101.9, 140.3, 148.9, 163.5. 

HRMS (EI) calcd for C10H6Br2N2O2 345.87755, found 345.87828, deviation 2.1 ppm. 

 

2,6-(bis trimethylsilyl ethynyl) benzo[1,2-d;4,5-

d´]bisoxazole 3d. Recrystallization from 

heptanes/benzene afforded the product in 67% yield. 

Melting point 164°- 165°C 
1
H NMR (CDCl3) δ 0.32 (s, 18H), 7.79 (s, 2H); 

13
C NM  δ 

0.5, 91.3, 101.6, 103.1, 140.3, 148.3, 148.5. HRMS (EI) calcd for C18H20N2O2Si2 

352.10633, found 352.10706, deviation 2.1 ppm. 

 

2,6-(bis chloromethyl) benzo[1,2-d;4,5-d´]bisoxazole 3e. 

Recrystallization from heptanes afforded the product in 40 

% yield. Melting point 146-147 ºC. 
1
H NMR (CDCl3)) δ 

4.78 (s, 4H), 7.87 (s, 2H); 
13
C NM  δ 36.6, 102.2, 139.8, 148.9, 162.7. HRMS (EI) calcd 



www.manaraa.com

51 

 

for C10H6Cl2N2O2 255.9806, found 255.9809, deviation 1.0 ppm. 

 

Benzo[1,2-d;5,4-d´]bisoxazole 5a. Recrystallization from 

THF/benzene afforded the product in 91% yield. Melting point 

206-208°C. 
1
H NMR (CDCl3) δ 7.79 (s, 1H), 8.16 (s, 3H); 

13
C 

NM  δ 94.1, 111.5, 138.1, 148.5, 153.6. HRMS (EI) calcd for 

C8H4N2O2 160.02728, found 160.02757, deviation 1.8 ppm. 

 

2,6-dimethyl benzo[1,2-d;5,4-d´]bisoxazole 5b. 

Recrystallization from heptane afforded the product in 83% 

yield. melting point 142-143°C (lit. mp. 143 ºC).
7
 

1
H NMR 

(CDCl3) δ 2.62 (s, 6H), 7.52 (s, 2H), 7.82 (s, 2H); 
13

C NM  δ 14.9, 92.8, 109.0, 138.9, 

148.7, 164.5. HRMS (EI) calcd for C10H8N2O2 188.05858, found 188.05889, deviation 

1.7 ppm.  

 

2,6-(bis trimethylsilyl ethynyl) benzo[1,2-d;5,4-

d´]bisoxazole 5d. Recrystallization from heptane 

afforded the product in 40% yield. Melting point 

186°-187°C. 
1
H NMR (CDCl3) δ 0.31 (s, 18H), 7.61 (s, 1H), 8.00 (s, 1H); 

13
C NM  δ 

0.5, 91.2, 93.4, 102.8, 111.2, 139.1, 147.9, 149.2. HRMS (EI) calcd for C18H20N2O2Si2 

352.10633, found 352.10706, deviation 2.1 ppm.  

 

2,6-(bis chloromethyl) benzo[1,2-d;5,4-d´]bisoxazole 5e. 

Recrystallization from heptane afforded the product in 73% 

yield. Melting point 161-162 ºC. 
1
H NMR (CDCl3) δ 4.78 

(s, 4H), 7.73 (s, 1H), 8.06 (s, 1H); 
13
C NM  δ 36.5, 94.1, 111.6, 138.9, 149.6, 162.0. 

HRMS (EI) calcd for C10H6Cl2N2O2 255.9806, found 255.9804, deviation 0.9 ppm. 

 

2,6-dimethyl benzo[1,2-d;4,5-d´]bisoxazole-

diethylphosphonate Ester) 3g. Triethylphosphite (1.63 
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g, 9.8 mmol) and 2,6-(bis chloromethyl) benzo[1,2-d;4,5-d´]benzobisoxazole 3e, (840 

mg, 3.3 mmol) were heated to 150 ºC for 4 h. The reaction was cooled and the crude 

product obtained as a solid. Recrystalization from xylenes affords the product in 94% 

yield. Melting point 145-146 °C.
 1

H NMR (300 MHz, CDCl3): δ 1.33 (t, 12H), 3.58 (d, 

4H), 4.19 (m, 8H), 7.79 (s, 2H).
 13

C NM  δ 16.59, 16.65, 27.88, 29.27, 63.27, 63.34, 

101.3, 139.6, 148.8, 160.2, 160.3. HRMS (EI) calcd for C18H26N2O8P2 460.11643, found 

460.11761, deviation 2.6 ppm. 

 

2,5-didodecyloxy-1,4-benzene dicarboxaldehyde 6 was 

synthesized in 26% yield, according to the literature procedure.
8
 

Melting point 72-73 ºC. 
1
H NMR (300 MHz, CDCl3): δ 0.877 (t, 

6H), 1.26-1.54 (m 40H), 4.08 (t, 4H), 7.43 (s, 2H), 10.52 (s, 2H).  

 

 Synthesis of Polymer 7. Compound 3g (370 mg, .80 mmol) and 2,5-didodecyloxy-1,4-

benzene dicarboxaldehyde 6 (400 mg, .80 mmol) were dissolved in 15 mL of THF. Then a 

1M solution of potassium tert-butoxide in THF (2 mL, 2.4 mmol) was added to the solution 

and the mixture and the solution was heated to reflux for 24 h to obtain a red solution. The 

solution was then precipitated in MeOH and filtered to obtain a red-orange solid. The 

resultant polymer was purified via Soxhlet extraction (MeOH, hexane and THF). Evaporation 

of the THF layer yielded the polymer, 0.256 g, 86% yield. 1H-NMR (400 MHz, CDCl3): δ 

0.887 (m, CH3-), 1.29 (br m, -(CH2)10-), 4.13 (br m, -OCH2-), 7.39-7.46 (br m, Ar-H and 

vinylic peaks), 10.46 terminal aldehyde peak, 10.73 terminal P(=O)(OH)2.UV-Vis (THF) 

λmax = 476 nm. GPC: Mn = 5,672, Mw = 10,091, PDI = 1.77. Fluorescence (THF): λem = 515 

nm (λexc = 476 nm). 
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2.7.4 NMR Spectra.
H2N

HO

OH

NH2

*2 HCl

1
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NMR Spectra (cont.)
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OH
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NMR Spectra (cont.) 

EtO

OEt

OEt
Br
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NMR Spectra (cont.) 

TMS

OEt

OEt

OEt

2d
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NMR Spectra (cont.)

EtO

OEt

OEt
Cl

2e
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NMR Spectra (cont.)
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NMR Spectra (cont.)
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NMR Spectra (cont.)
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NMR Spectra (cont.) 

N

ON

O

TMSTMS

3d



www.manaraa.com

 63 

NMR Spectra (cont.)
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NMR Spectra (cont.) 
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NMR Spectra (cont.)
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NMR Spectra (cont.) 
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NMR Spectra (cont.)
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NMR Spectra (cont.) 
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NMR Spectra (cont.)
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UV-Vis spectra of monomer 3g in CHCl3. 

 

UV-Vis spectra of Polymer 7 in THF (right) and Fluorescence spectra (left) excited at its  absorbance 

maximum. 
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CHAPTER 3 

 

Facile Synthesis of 2,6-Disubstituted Benzobisthiazoles: Functional Monomers for 

the Design of Organic Semiconductors. 

 

Reproduced from Journal of Organic Chemistry 2010, 75, 495 with permission from 

American Chemical Society. 

Copyright © 2011 

 

Jared F. Mike, Jeremy J. Inteman, Arkady Ellern and Malika Jeffries-EL* 

Department of Chemistry, Iowa State University, Ames, IA 50011-3111 

 

 

 

3.1 ABSTRACT 

SH

NH2

 2 HCl

H2N

HS

Py (2 equiv.)

DMA, 60 0C

N

SN

S
R R

R

EtO

OEt

OEt

(3 equiv.)

 

 The synthesis of several synthetically useful 2,6-disubstituted benzobisthiazoles is 

described. The method is based on the Lewis Acid catalyzed ring-closing reaction 

between substituted orthoesters and diamino benzene dithiol. The resulting 

benzobisthiazoles are obtained cleanly and in good yields. These materials are of interest 

for the development of new organic semiconductors.  

3.2 INTRODUCTION 

 The design and synthesis of new organic semiconducting materials is of current 

interest due to the important roles these materials play in the development of plastic 

electronics.
1
 Although many π-conjugated materials are known, most of them are electron 

rich and exhibit electron-donating and hole-transporting (p-type) electronic properties. 

Thus the synthesis of electron-deficient π-conjugated materials, which can exhibit 

electron-accepting and electron-transporting properties (n-type), remains an important 

problem in the field.  

 The electron-deficient benzo[1,2-d;4,5-d´]bisthiazole moiety (trans-BBZT) is a 



www.manaraa.com

 72 

promising building block for the development of new organic semiconductors because 

materials containing benzobisthiazoles exhibit high fluorescence,
2
 thermal stability,

3, 4
 

electron affinity,
5
 and interesting nonlinear optical properties.

2, 6, 7
 Typical synthesis of 

benzobisthiazoles requires strong acids or oxidants
8
 and high temperatures.

9
 These harsh 

reaction conditions restrict the types of substituents that can be incorporated onto these 

moieties, hindering the exploration of materials containing benzobisthiazoles. 

 Recently we reported the synthesis of 2,6-disubstituted benzobisoxazoles using 

substituted orthoesters and rare earth metal triflates as catalysts.
10

 These reaction 

conditions facilitated the synthesis of novel benzobisoxazoles bearing a variety of 

substituents cleanly and in high yield. Inspired by these promising results, we set out to 

develop a mild, lowtemperature method for the synthesis of the analogous 2,6-

disubstituted benzobisthiazoles. Although benzo[1,2-d;4,5-d´]bisoxazole (trans-BBO) 

and trans-BBZT are structurally similar, the sulfur atom is less electronegative than the 

oxygen atom, and has similar electronegativity to the carbon atom. Thus the electron 

density is more equally shared between sulfur and carbon in trans-BBZT than between 

oxygen and carbon in trans-  O and the π-orbitals will be more delocalized. 

Additionally, the empty d-orbitals of the sulfur atom can contribute to the molecular π-

orbitals decreasing the energy of the π-π* transition.
7, 11

 These changes can be beneficial 

for the development of new organic semiconducting materials. Herein, we report the 

successful synthesis of several new benzobisthiazoles. We also demonstrate that 

functionality can be increased by a simple reaction following ring formation.  

3.3 RESULTS AND DISCUSSION 

XH

NH2

HX

H2N
 2 HCl

R-C(OEt)3 (3 equiv.), 

pyridine (2 equiv.)

N

OO

N
R R

N

XN

X
R R

or

solvent

X=O, S  

Scheme 1. Synthesis of 2,6-Disubstituted Benzobisiazoles 
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N

S
H2N

HS

SH

NH2

 2 HCl
N

S
H3C CH3

1
3b

CH3C(OEt)3 
catalyst

Solvent

 

entry solvent catalyst temp (ºC) time (h) yield
b
 (%) 

1 DMSO Y(OTf)3 50 n/a 0 

2 none none
 c
 90 6 51 

3 none H2SO4
c
 90 3 45 

4 DMAc Eu(OTf)3 50 1.5 77 

5 DMAc La(OTf)3 50 1.5 72 

6 DMAc Sc(OTf)3 50 1.5 75 

7 DMAc Y(OTf)3 50 1.5 69 

 DMAc Yb(OTf)3 50 1.5 77 

a Standard reaction conditions: substrate 1 M in solvent, 3 equiv of ortho ester, 5 mol % catalyst, and pyridine 2 
equiv. b Isolated yields. c 10 equiv. of orthoester used without pyridine. 

 

Table 1. Optimization reactions using DABDT 1 and triethyl orthoacetate 2b. 

 

 The general synthetic route for the benzobisazoles is shown in Scheme 1. Previously, 

we found that best reaction conditions for the synthesis of benzobisoxazoles are DMSO 

as a solvent, pyridine as a cosolvent, and rare metal triflates as catalysts.
10

 The use of the 

pyridine as a cosolvent is beneficial since it scavenges the hydrochloride salts that 

coordinate with the diamino diol. Removing the acids prevents the decomposition of the 

substituted orthoesters, which is catalyzed by protic acids.
10

 Using the reaction between 

2,5-diamino-1,4-benzene dithiol (DABDT) (1) and triethylorthoacetate (2b) as a model, 

we explored these conditions. Unfortunately, when DABDT was mixed with pyridine in 

DMSO, an insoluble green precipitate was formed. This was most likely caused by the 

formation of disulfide linkages, although the insolubility of the material prevented its 

characterization (entry 1). We then attempted to perform the reaction without any 

additional solvents, using 10 equivalents of the triethylorthoformate and the coordinated 

hydrochloride salts as an acid catalyst (entry 2). These conditions produced 2,6-

dimethylbenzobisthiazole 3b in a 51% yield. Using the same reaction conditions and 
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sulfuric acid as a catalyst, similar results were obtained (entry 3). In both cases the 

resulting products were formed along with some dark impurities, which could be 

removed after careful recrystallization. 

 To reduce the amount of orthoester required for these reactions, we performed a 

solubility test with DABDT to find a cosolvent. We investigated the use of DMA as a 

solvent, since DABDT dissolves in DMA at room temperature, and this solvent was not 

prone to the side reactions experienced previously. The reaction of DABDT and 

triethylorthoformate occurrs rapidly, when performed slightly above room temperature. 

The solid that forms is easily isolated by precipitation into water and filtration. We then 

explored the use of several different rare earth metal triflates to catalyze the reaction. The 

results are summarized in Table 1. On the basis of the model reactions, we found that 

most triflates gave similar results. Since all of these catalysts are commercially available, 

our bias toward the use of Eu(OTf)3, La(OTf)3, or Y(OTf)3 was due to their lower cost 

relative to the other rare earth metal triflates.  

 

N

SN

S

3f

P(OEt)3


P

P

OEt
O

OEt

O

EtO

EtO

3c

 

Scheme 2. Synthesis of monomer 3f.  

 

 Upon determining the optimum reaction conditions, we evaluated the scope of this 

reaction with respect to the orthoester. To accomplish this we utilized the commercially 

available triethyl orthoformate (2a) in addition to triethyl orthochloroacetate (2c), triethyl 

orthopropiolate (2d), and ethyl triethoxyacetate (2e), which were prepared in our 

laboratories. In all cases the orthoesters reacted with DABDT cleanly and in moderate 

yields. As a follow-up to our previous work, we also explored the use of DMA as a 

solvent for the synthesis of benzobisoxazoles. Interestingly, significantly lower yields 

were observed with DMSO as solvent.
10

 These lower yields were most likely due to the 

poor solubility of diaminohydroquinone and diaminoresorcinol in this solvent. We did 
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not investigate the synthesis of benzo[1,2-d;5,4-d´]bisthiazole (cis-BBZT) derivatives 

because of the inability to synthesize 4,6-diamino-1,3-benzene dithiol. Although the 

synthesis of this compound has been reported previously,
12

 we, like those before us, have 

struggled to obtain pure material due to its instability.
4 

 

N

SN

S

R R

3a-e

RC(OEt)3(2a-e), Y(OTf)3

DMA, Pyridine

H2N

HS

SH

NH

2 HCl

1

a: R=H, b: R=CH3, c: R=CH2Cl, d: R=C2Si(CH3)3, e: R= COOEt
 

 
ortho 
ester 

benzobisthiazole 
% 

yielda 

2a 

S

NS

N
H H

3a  

 
68 

2c 

S

NS

N
ClH2C CH2Cl

3c  

59 

 

2d 

S

NS

N

3d

TMSTMS

 

38 

 

2e 

N

SN

S
C C

OO

OCH2CH3H3CH2CO

3e  

53c 

 

 

a Standard reaction conditions: substrate 1 M in solvent, 3 equiv of ortho ester, 5 mol % catalyst, and pyridine 2 
equiv, 1.5 hours. bIsolated Yields. cReaction time was 18 hours. 

 

Table 2. Reaction of 1 with Various Orthoesters 2a, 2c-e. 

 

 To increase the functionality of these BBZT derivatives, we synthesized the 

diphosphonate ester 3f via the Arbuzov reaction of 3c with triethylphosphite (Scheme 2). 

This reaction occurred cleanly to produce the 3f in an 80% yield (Table 2).Monomers of 

this type have been useful for the synthesis of vinylene polymers via the Horner-

Wadsworth-Emmons reaction.  

 We were able to obtain X-ray quality crystals of 3a, 3b, 3c, and 3f suitable for 

analyses to be performed by recrystallization. Detailed crystallographic data can be found 

in the Supporting Information, and a representative example is shown in Figure 1. In 

addition to confirming the identity of these new compounds, the X-ray analyses show that 

these monomers are all planar with a mean deviation from planarity of 0.0114 Å. The flat 
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nature of the benzobisthiazoles is beneficial to promoting efficient π-stacking and 

improving the charge transport of materials derived from them. 

 

 
 

Figure 1. A single crystal X-ray ORTEP structure, (50 % probability) of 3c. 

 

 In summary, we have developed a new method for the synthesis of novel 2,6-

disubstituted benzobisthiazoles. The benefits of this approach include the mild reaction 

conditions and ease of purification without column chromatography. Currently we are 

developing new organic semiconductors using these compounds. 

3.4 EXPERIMENTAL SECTION 

 Typical Procedure for the Synthesis of Benzobisthiazoles (3a-e). Benzo[1,2-d;4,5-

d´]bisthiazole (3a). In a round-bottomed flask 2,5-diamino-1,4-benzene dithiol 1 (1.23 g, 

5.0 mmol) and pyridine (791 mg, 10.0 mmol) were dissolved in DMA (10 mL). The 

resulting solution is added via a syringe to a mixture of triethylorthoformate 2a (2.22 g, 

15.0 mmol) and Y(OTf)3 (134 mg, 0.255 mmol) in a round-bottomed flask. The reaction 

is stirred at 55 °C for 1 h and then cooled. The reaction is diluted with water and the 

crude product collected by filtration. Recrystallization of the crude with 

dichloromethane/heptanes gave white needles (0.65 g, 68% yield). Melting point >260 

°C. 
1
HNMR (400 MHz; DMSO-d6) δ 8.92 (2H, s), 9.49 (2H, s); 

13
CNMR (100 MHz; 

DMSO-d6) δ 116.3, 132.7, 151.2, 157.9. HRMS (EI) 191.98189, C8H4N2S2 requires 

191.98159, deviation 1.6 ppm.  
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 2,6-Dimethylbenzo[1,2-d;4,5-d´]bisthiazole (3b). Compound 3b was synthesized 

following the same protocol as for compound 3a with 4 and triethylorthoacetate 2b. The 

product was obtained after recrystallization from dichloromethane/heptanes as white 

needles (0.85 g, 77% yield). Melting point 232-233 °C. 
1
HNM  (400 MHz; CDCl3) δ 

2.86 (6H, s), 8.34 (2H, s); 
13
CNM  (100 MHz; CDCl3) δ 20.5, 114.4, 134.5, 151.0, 

167.9. HRMS (EI) 220.01289, C10H8N2S2 requires 220.01330, deviation 1.9 ppm. 

 

 2,6-Bis(chloromethyl)benzo[1,2-d;4,5-d´]bisthiazole (3c). Compound 3c was 

synthesized following the same protocol as for compound 3a with 4 and triethyl 

orthochloroacetate 2c. The product was obtained after recrystallization from heptanes as 

pale yellow needles. The reaction was run on 15 mmol scale with a 2.54 g yield (59%). 

Melting point 219-220 °C. 
1
HNMR (400 MHz; DMSO-d6) δ 5.28 (4H, s), 8.82 (2H, s); 

13
CNMR (100 MHz; DMSO-d6) δ 42.1, 116.5, 134.7, 150.5, 168.8. H MS (EI) 

287.93549,C10H6Cl2N2S2 requires 287.93495, deviation 1.9 ppm.  

 

 2,6-Bis(trimethylsilylethynyl)benzo[1,2-d;4,5-d´]bisthiazole (3d). Compound 3d 

was synthesized following the same protocol as for compound 3a with 4 and triethyl 

orthopropiolate 2d. The product was obtained after recrystallization from pentane as pale 

yellow needles (38% yield). Melting point >260 °C (pentane). 
1
HNMR (400 MHz; 

CDCl3) δ 0.331 (18H, s), 8.478 (2H, s); 
13
CNM (100 MHz; CDCl3) δ-0.4, 96.8, 104.9, 

115.9, 135.1, 150.0, 151.7. HRMS (EI) 384.06158, for C18H20N2S2Si2, requires 

384.06064, deviation 2.4 ppm. 

 

 Benzo[1,2-d;4,5-d´]bisthiazole Diethyl Ester (3e). Compound 3e was synthesized 

following the same protocol as for compound 3a with 4 and ethyl triethoxyacetate 2e. 

The product was obtained after recrystallization from pentane as pale yellow needles 

(53% yield). Melting point 241-242 °C (chloroform/ethanol). 
1
HNMR(400 MHz; CDCl3) 

δ 1.52 (6H, t, J=5.4 Hz), 4.59 (4H, q, J=5.4 Hz), 8.83 (2H, s); 
13

CNMR (100 MHz; 

CDCl3) δ 14.5, 63.7, 118.9, 136.5, 152.6, 160.4, 161.3. H MS (EI), found 336.02464, 

C14H12N2O4S2 requires 336.02385, deviation 2.3 ppm. 
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 2,6-Dimethylbenzo[1,2-d;4,5-d´]bisthiazolediethylphosphonate Ester (3f). 

Triethylphosphite (1.12 g, 7.75 mmol) and 2,6-(bischloromethyl) benzo[1,2-d;4,5-

d0]benzobisthiazole 3c (650 mg, 2.25 mmol) were heated to 150 °C for 4 h. The reaction 

was cooled to yield crude 3f. Recrystallization from chloroform/heptanes afforded the 

product as a white solid (885 mg, 80%). Melting point 203-204 °C. 
1
H NMR (400 MHz; 

CDCl3) δ 1.32 (12H, t, J=6.0 Hz), 3.75 (4H, d, J=15 Hz), 4.18 (8H, m), 8.44 (2H, s). 

13
CNM (100 MHz; CDCl3) δ 16.6 (d, J=6.0 Hz), 33.1, 34.5, 63.1 (d, J=6.0 Hz), 115.3, 

135.2, 148.8, 151.1, 162.6, 162.7. HRMS (EI) 492.07227, C18H26N2O6P2S2 requires 

492.07075, deviation 3.0 ppm. 
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3.7 SUPPORTING INFORMATION 

3.7.1 General Experimental Details.  

 Compounds 1
1
, 2c,

2
 2d,

3
 were all synthesized according to the literature procedures.  

All other compounds were purchased from commercial sources and used without further 

purification. Nuclear magnetic resonance spectra were obtained on a 400 MHz 

spectrometer (
1
H at 400 MHz and 

13
C at 100 MHz). 

1
H NMR samples were referenced 

internally to residual protonated solvent 
13

C NMR are referenced to the middle carbon 

peak of CDCl3> In both instances chemical shifts are given in δ relative to solvent. 

Coupling constants are reported in Hz. High-resolution mass spectra were recorded on a 

double focusing magnetic sector mass spectrometer using EI at 70 eV. Melting points 

were obtained using a melting point apparatus, upper temperature limit 260 ºC. GC-MS 

analysis was performed on a GC column was a fused silica capillary column cross-linked 

with 5% phenylmethylsiloxane and Helium was the carrier gas. X-ray crystal structure 

data for compounds 3a (CCDC 747963), 3b (CCDC 747964), 3c (CCDC 747962) and 3f 
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(CCDC 749471) were deposited with the Cambridge Crystallographic Data Centre, 12 

Union Road, Cambridge CB2 1EZ, UK. 
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3.7.3 Supplemental Experimental 

 
 Ethyl dichloroethoxyacetate (S2). This compound was prepared in 54% yield 

according to the literature procedure.
4
 The product was distilled under reduced pressure 

to give 3 fractions. The 3
rd

 fraction which was collected between 110°-115°C, contains 

the purest product (95% pure by GC/MS), with 5% diethyloxalate. 
1
H NMR (CDCl3) δ 

1.38 (overlapped-q, 6H), 4.19 (m, 2H), 4.377. (m, 2H). 

 

 
 

Figure S1. 
1
H NMR spectrum of S2 
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Ethyl triethoxyacetate (2e). This compound was prepared in 45 % yield from according 

to the literature procedure.
4
 The product was distilled via Kugelhor distillation under 

reduced pressure. The fraction at 50 °C, contains the purest product (90% pure by 

GC/MS), diethyl oxalate is the impurity. 
1
H NMR (CDCl3) δ 0.949 (t, 9H, J=5.7 Hz), 

1.046 (t, 3H, J=5.4 Hz), 3.30 (q, 6H, J=5.7), 3.99 (q, 2H, J=5.4Hz); 
13
C NM  δ 13.5, 

14.3, 58.1, 60.9, 109.1, 165.3. 
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Figure S2. 
1
H NMR spectrum of 2e in CDCl3 

 

Figure S3. 
13

C NMR spectrum of 2e.
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Figure S4. 
1
H NMR spectrum of 3a. 

 

Figure S5. 
13

C NMR spectrum of 3a.
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Figure S6. 
1
H NMR spectrum of 3b. 

 

Figure S7. 
13

C NMR spectrum of 3b.  
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Figure S8. 
1
H NMR spectrum of 3c. 

 

Figure S9. 
13

C NMR spectrum of 3c.
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Figure S10. 
1
H NMR spectrum of 3d. 

 

Figure S11. 
13

C NMR spectrum of 3d. 
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Figure S12. 
1
H NMR spectrum of 3e. 

 

 

Figure S13. 
13

C NMR spectrum of 3e. 



www.manaraa.com

 89 

 

Figure S14. 
1
H NMR spectrum of 3f. 

 

Figure S15. 
13

C NMR spectrum of 3f. 
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Compound reference 3a 3b 3c 3f 

Chemical formula C8H4N2S2 C10H8N2S2 C10H6Cl2N2S2 C18H24N2O6P2S2 

Formula Mass 192.25 220.30 289.19 490.45 

Crystal system Monoclinic Monoclinic Triclinic Triclinic 

a/Å 3.8605(15) 8.0071(13) 6.3376(17) 7.9438(6) 

b/Å 16.025(6) 6.5112(10) 7.334(2) 8.8059(12) 

c/Å 6.053(2) 10.0130(16) 12.454(3) 9.4063(7) 

α/° 90 90 93.007(4) 101.6930(10) 

β/° 92.310(5) 112.755(2) 100.106(4) 112.5340(10) 

γ/° 90 90 99.647(4) 103.4750(10) 

Unit cell volume/Å
3
 374.2(2) 481.40(13) 559.8(3) 558.93(10) 

Temperature/K 153.(2) 153.(2) 153(2) 153(2) 

Space group P121/n1 P121/c1 P1̄  P1̄  

No. of formula units per unit cell, Z 2 2 2 1 

No. of reflections measured 4166 5463 4691 6652 

No. of independent reflections 1129 1492 2148 3361 

Rint 0.0380 0.0338 0.0396 0.0150 

Final R1 values (I > 2σ(I)) 0.0409 0.0339 0.0440 0.0375 

Final wR(F
2
) values (I > 2σ(I)) 0.1010 0.0810 0.1063 0.1120 

Final R1 values (all data) 0.0535 0.0474 0.0707 0.0424 

Final wR(F
2
) values (all data) 0.1097 0.0882 0.1210 0.1166 

CCDC number 747963 747964 747962 749471 

 

Table S1. Crystallographic Data for compounds 3a, 3b, 3c and 3f. 
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Figure S16. A single crystal X-Ray ORTEP of 3a. 

 

 

Figure S17. A single crystal X-Ray ORTEP of 3b. 
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Figure S18. A single crystal X-Ray ORTEP of 3c. 

 

 

Figure S19. A single crystal X-Ray ORTEP of 3e. 
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CHAPTER 4 

 

Synthesis and Characterization of Dialkoxy Substituted Poly(phenylenevinylene) 

Benzobisoxazoles. 

 

Reproduced from Journal of Polymer Science: Part A: Polymer Chemistry, 2010, 48, 

1456, with permission from Wiley Interscience. 

Copyright © 2011 
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4.1 ABSTRACT 

 

 A new route for the synthesis of soluble, alkoxy-substituted poly(p-

phenylenevinylene) benzobisoxazoles has been developed. The target polymers can be 

prepared in three steps: the Lewis acid catalyzed condensation of corresponding diamino 

benzene diols with triethyl orthochloroacetate, the Arbuzov reaction of the resultant 

benzobisoxazole, and the Horner-Wadsworth-Emmons polymerization of 2,5-

didodecyloxyterephthalaldehyde and the resulting 2,6-dimethylbenzobisoxazole-

diethylphosphonate esters. 

4.2 INTRODUCTION 

 Conjugated polymers (CPs) are of interest for use in a variety of applications such as 
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thin film transistors (TFT)s,
1
 organic light emitting diodes (OLED)s,

2
 and photovoltaic 

cells (PVC)s.
3
 The advantages that CPs possess over inorganic semi-conducting materials 

include ease of fabrication via solution-based processing techniques and the ability to 

modify the electronic properties of the material through chemical synthesis.
4
 The latter is 

beneficial for the optimization of the materials’ properties for specific applications. While 

a large number of CPs are known, the majority of these polymers are electron-donating 

and hole-transporting in nature (p-type). Soluble CPs with electron-accepting and 

electron-transporting properties (n-type) are less abundant in the literature but essential 

for the development of polymer-based electronics. 

 Among conjugated polymers, polybenzobisoxazoles (PBO)s are promising for use in 

organic semiconducting applications because they combine efficient electron transport,
5
 

photoluminescence,
6
 and third-order nonlinear optical properties

7
 with excellent 

mechanical strength
8
 and thermal stability.

9
 Unfortunately, fully conjugated PBOs are 

insoluble in aprotic solvents and must be processed from acidic solvents such as Lewis 

acid/nitromethane, methane sulfonic acid, trifluoromethanesulfonic acid, or sulfuric 

acid.
5a, 10

 None of these solvents are ideal for large-scale device fabrication, which limits 

the use of PBOs in organic semiconducting applications. Generally, the solubility of 

conjugated polymers can be improved by the attachment of flexible side-chains onto the 

polymer backbone.
11

 Such derivations can also serve as a way to modify the polymers’ 

electronic properties. Alas, conventional PBO synthesis requires the high-temperature 

condensation of bis-o-aminophenols and aromatic diacids in the melt or in mixed solvents 

such as polyphosphoric acid (PPA), phosphorus pentoxide/methanesulfonic acid, or 

trimethylsilyl polyphosphate (PPSE)/o-dichlorobenzene.
12 

These harsh reaction 

conditions limit the types of substituents that can successfully be incorporated onto the 

polymer backbone.
12c, 13

  

 To circumvent these issues, we designed and synthesized new 2,6-functionalized 

benzobisoxazoles to use as building blocks for new organic semiconductors.
14

 As a result, 

benzobisoxazole polymers with flexible side chains can be synthesized using mild 

reaction conditions. In this paper, we report the optimization of the Horner-Wadsworth-

Emmons reaction (HWE) for the organic soluble poly(phenylenevinylene)-co-
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benzobisoxazoles (PPVBBO)s. The solubility of these polymers allows for structural 

characterization using 
1
H NMR spectroscopy and gel permeation chromatography. We 

also evaluated the properties of these polymers using UV-visible and fluorescence 

spectroscopy, cyclic voltammetry, thermal gravimetric analysis (TGA), and differential 

scanning calorimetry (DSC). 

4.3 EXPERIMENTAL 

4.3.1 General Experimental Details 

 Tetrahydrofuran was dried using an Innovative Technologies solvent purification 

system. All other compounds were purchased from commercial sources and used without 

further purification. Nuclear magnetic resonance spectra were obtained on a Varian 400 

MHz spectrometer. All samples were referenced internally to the residual protonated 

solvent, in the case of 
1
H spectra and to the center peak of the CDCl3 triplet for 

13
C 

spectra. In both cases the chemical shifts were given in δ, relative to the solvent. Gel 

permeation chromatography (GPC) measurements were performed on a Viscotek GPC 

Max 280 separation module equipped with three 5μm I-gel columns connected in a series 

(guard, HMW, MMW and LMW) with a refractive index detector. Analyses were 

performed at 35 °C using THF as the eluent with the flow rate at 1.0 mL/min. Calibration 

was based on polystyrene standards. Fluorescence spectroscopy and UV-Visible 

spectroscopy were obtained using polymer solutions in THF, and thin films were spun 

from these solutions. Both polymers were excited at their respective emission maxima. 

Relative PL quantum yields were obtained using Coumarin 6 in ethanol as a standard for 

the solution measurements and 10% by weight perylene in PMMA for the solid-state 

measurements. The polymers solutions were prepared in THF. The quantum yields were 

corrected for the difference in the refractive index of the solvent using the equation F(X) 

= (As /Ax)(Fx /Fs)(nx /ns)
2
 F(S), where F is the fluorescence quantum yield, A is the 

absorbance at the excitation wavelength, F is the area under the corrected emission curve 

(expressed in number of photons), and n is the refractive index of the solvents used. 

Subscripts s and x refer to the standard and to the unknown, respectively.
15

 Thermal 

gravimetric analysis measurements were performed using TA instruments Model Q50, 
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within the temperature interval of 30 ºC - 650 ºC, with a heating rate of 20 ºC/minute, 

under ambient atmosphere. Differential scanning calorimetry was performed using a TA 

instruments Q20 model DSC, with a first scan at a heating rate of 15 ºC/min to erase 

thermal history and a second scan to measure transitions.  Transitions were also measured 

with cooling at 15 ºC/min. All runs were performed under nitrogen. Cyclic 

voltammograms were performed in 0.1M tetrabutylammonium hexafluorophosphate 

using Ag/AgCl in 3M KCl reference electrode. The potential values obtained versus the 

Ag/AgCl were converted to the standard calomel electrode (SCE) reference. 

4.3.2 Synthesis 

 2,6-dimethylbenzo[1,2-d;5,4-d’]bisoxazole-diethylphosphonate ester (2). 

Triethylphosphite (2.91 g, 17.5 mmol) and 2,6-bis(chloromethyl)benzo[1,2-d; 5,4-

d’]bisoxazole
14

 1 (1.50 g, 5.83 mmol) were heated to 150 ºC for 4 h. The reaction was 

cooled and the crude product solidified. The crude product was purified (recrystallized 

from heptane), and monomer 2 was obtained as a white solid. Yield: 1.96 g (73%), mp: 

104-105 °C.
 1

H NMR (300 MHz, CDCl3, δ, ppm): 1.31 (t, 
3
JHH= 6.0 Hz, 12H), 3.56 (d, 

2
JPH= 24 Hz, 4H), 4.19 (m, 

3
JHH=6.0 Hz, 

2
JPH= 24 Hz, 8H), 7.65 (s, 1H), 7.94 (s, 1H). 

 

13
C NM  δ (CH3), 16.57 (d, 

4
JPC= 40 Hz), (Ar-CH2-), 28.49 (d, 

1
JPC= 138 Hz), (-O-CH2-

), 63.24 (d, 
3
JPC= 60 Hz), (ArC), 93.54, 110.09, 139.06, 149.09, 159.56, 159.67. HRMS 

(EI) calcd. for C18H26N2O8P2 460.11643, found 460.11761, deviation 2.6 ppm. 

 

 2,6-dimethylbenzo[1,2-d;4,5-d’]bisoxazole-diethylphosphonate ester (4). The title 

compound was prepared from 2,6-bis(chloromethyl)benzo[1,2-d;4,5-d’]bisoxazole
14

 3 as 

described for 2. The product was recrystallized from xylenes. Yield 94%, mp: 145-146 

°C.
 1

H NMR (300 MHz, CDCl3, δ, ppm) 1.33 (t, J= 6.0 Hz, 12H), 3.58 (d, J=15 Hz, 4H), 

4.19 (m, J1= 6.0 Hz, J2 = 15 Hz, 8H), 7.79 (s, 2H).
 13
C NM  δ (CH3), 16.62 (d,  

4
JPC= 60 

Hz), (Ar-CH2-) 28.58 (d, 
1
JPC= 138 Hz), (-O-CH2-), 63.27 (d, 

3
JPC= 70 Hz), (ArC), 

101.3, 139.6, 148.8, 160.2, 160.3.
 
HRMS (EI) calcd for C18H26N2O8P2 460.11643, found 

460.11761, deviation 2.6 ppm. 

 

 2,5-didodecyloxy-1,4-benzene dicarboxaldehyde (5) was synthesized in 64% yield, 
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according to the literature procedure.
16

 Melting point 72-73 ºC. 
1
H NMR (300 MHz, 

CDCl3): δ 0.877 (t, 6H), 1.26-1.54 (m 40H), 4.08 (t, 4H), 7.43 (s, 2H), 10.52 (s, 2H).  

 

 General Method for Polymer Synthesis. Benzobisoxazole monomer (2 or 4) (460 

mg, 1.00 mmol) and 2,5-didodecyloxy-1, 4-benzene dicarboxaldehyde 5 (503 mg, 1.00 

mmol) were dissolved in THF (15 mL). Then a 1M solution of potassium tert-butoxide in 

THF (2.5 mL, 2.5 mmol) was added to the solution and the mixture and the solution was 

stirred at room temperature for 48 h to obtain an opaque, dark red solution. Then an 

additional THF (10 mL) was added and the reaction stirred for an additional 72 hours. 

The solution was then precipitated by pouring into MeOH and filtered to obtain a red-

orange solid. The resultant polymer was purified via Soxhlet extraction (MeOH, hexane 

and THF). Evaporation of the THF layer yielded the polymer. 

 

 cis-DDO-PPVBBO (P25) (40% yield). 
1
H-NMR (400 MHz, THF-d8): δ 0.886 (m, 

CH3-), 1.29 (br m, -(CH2)10-), 4.16 (br m, -OCH2-), 7.72-8.10 (br m, Ar-H and vinylic 

peaks), 10.41 terminal aldehyde peak, 10.68 terminal P(=O)(OH)2. GPC: Mn = 5,885, Mw 

= 14,424, PDI = 2.45. UV-Vis (THF) λmax = 405 nm. Fluorescence (THF): λem = 495, 526 

nm (λexc = 405 nm). 

 

 trans-DDO-PPVBBO (P45) (53% yield). 
1
H-NMR (400 MHz, THF-d8): δ 0.866 

(m, CH3-), 1.29 (br m, -(CH2)10-), 4.17 (br m, -OCH2-), 7.62-8.079 (br m, Ar-H and 

vinylic peaks). GPC: Mn = 6,843, Mw = 18,082, PDI = 2.64. UV-Vis (THF) λmax = 456 

nm. Fluorescence (THF): λem = 518, 549 nm (λexc = 450 nm). 
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4.4 RESULTS AND DISCUSSION 

 

Scheme 1. Synthesis of monomers and polymers. 

 

 The synthetic routes for polymers P25 and P45 are shown in Scheme 1. The 

synthesis of monomers 2 and 4 was accomplished by the Arbuzov reaction between 

triethylphosphite and the corresponding 2,6-bis(chloromethyl)benzobisoxazoles, 

according to known procedures.
16

 Initially, the polymerization was performed at room 

temperature for 24 hours, and low molecular-weight polymers were obtained. An 

increase in the reaction temperature to reflux led to an increase in the molecular weight of 

the polymer; however, this was accompanied by the formation of a substantial amount of 

insoluble material. Ultimately, we found that performing the reaction at room 

temperature for a longer time period gave the best results. The optimized conditions for 

the HWE polymerization were to dissolve both 2,5-didodecyloxyterephthaldehyde (5) 

and a benzobisoxazole monomer (2 or 4) in THF under an inert atmosphere. We then 

added 2.5 equivalents of potassium tert-butoxide in THF and stirred the reaction at room 

temperature for 5 days. The resulting polymers were isolated by precipitation into 

methanol and further purified by Soxhlet extraction. The polymers were obtained in 

yields of 53% for P25 and 40% for P45. Both polymers were highly soluble in standard 
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organic solvents, such as THF and chloroform. Thus we were able to confirm the 

chemical structures of P25 and P45 using 
1
H NMR, and measure the relative molecular 

weights of both polymers by gel permeation chromatography (GPC) at 35 °C using THF 

as an eluent. Polymer P25 had a molecular weight Mw=18,100 and a polydispersity index 

(PDI) = 2.64. Polymer P45 had a molecular weight Mw =14,400 and a PDI = 2.45. The 

results are summarized in Table 1. 

 

Polymer Mw
a
 PDI Td (°C)

b
 Tg (°C)

c
 

P25 14400 2.45 315 118 

P45 18100 2.64 304 99 

a Determined by GPC in THF using polystyrene standards. b 5% weight loss temperature by TGA under N2.
c Data from 

second scan reported, heating rate 15 ºC/min under N2. 

 

Table 1. Physical properties of DDO-PPVBBOs P25 and P45. 

 

 

Figure 1. TGA curves of P25 and P45. 

 

 To further characterize the properties of P25 and P45, we evaluated their thermal 

stability using thermogravimetric analysis and differential scanning calorimetry. The 

TGA curves are shown in Figure 1 and the data summarized in Table 1. We anticipated 

that using flexible side chains to improve solubility of the polymers would reduce the 
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thermal stability of the new polymer relative to known unsubstituted PBOs.
9b

 Both 

polymers were found to be thermally stable with weight loss onsets occurring only above 

300 °C under nitrogen. While the Td is significantly lower than the decomposition 

temperatures of unsubstituted polybenzobisoxazoles (600 ºC),
9a

 it is still high enough for 

these polymers to be useful in semiconducting applications. Additionally, DSC revealed 

glass transition temperatures (Tg) of 118°C for P25 and 99ºC for P45, whereas 

unsubstituted polybenzobisoxazoles did not show any observable transitions before their 

decomposition temperature. The observance of a Tg’s at lower temperatures are due in 

part to the low molecular weight of the polymers in addition to the presence of the alkoxy 

side chains. 

 

Figure 2. Absorption (black), emission spectra (aqua) of polymers P25 in solution (THF, 

solid lines) and of thin films (cast from THF, dashed lines).  
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Figure 3. Absorption (black), emission spectra (aqua) of P45 in solution (THF, solid 

lines) and of thin films (cast from THF, dashed lines).  

 

 To evaluate the optical properties of P25 and P45, we performed UV-Vis and 

fluorescence and photoluminescence (PL) spectroscopy. The PL quantum yield of P25 

was determined to be 0.40 in solution and 0.01 in the solid state. Similarly, P45 has a 

solution PL quantum yield of 0.48 and a solid-state quantum yield of 0.01. These small 

values are typical of polymers with closely packed chains. The absorption and emission 

spectra for these polymers were measured both as solutions in THF and as thin films. We 

observed a λ
ab

max  at 405 nm for P25 and λ
ab

max  at 450 nm for P45. Both polymers were 

highly fluorescent and upon excitation at their respective max showed two peaks: P25 

had a λ
em

max at 495 nm and shoulder at 526 nm, and P45 had a λ
em

max at 518 nm and a 

shoulder at 549 nm. The thin film UV-Vis absorption of P25 showed only a negligible 

difference compared to the solution spectra with λ
ab

max= 406 nm, versus the solution 

λ
ab

max= 405 nm. Similarly, the thin film fluorescence emission of P25 showed a slight 

blue shift compared to the solution spectra with λ
em

max= 490, 520 nm versus the solution 

λ
em

max= 495, 518 nm (Figure 2).  In contrast, the thin film UV-Vis absorption of P45 
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showed a considerable blue-shift compared to the solution spectra with λmax= 423 nm, 

versus the solution λmax= 450 nm. Similarly, the thin film fluorescence emission of P45 

showed a blue shift in comparison to the solution spectra with λ
em

max = 485 nm versus the 

film λ
em

max = 518 nm (Figure 3). Typically, blue shifts suggest a slight decrease of the 

conjugation length in the solid state, most likely due to inefficient packing.  Conversely, 

red shifts suggest an increase in conjugation length, often due to planarization of the 

polymer in the solid state. In our case, we are observing a greater blue shift in the trans-

DDO-PPVBBO P45, but not in the cis-DDO-PPVBBO P25. Thus the origin of the blue 

shift is most likely due to excited state relaxations. In similar fashion to the well-known 

planarization of the excited state of biphenyl, where upon the double bond character 

between rings increases in the excited state and the molecule planarizes.
17

  

 

a Solution fluorescence quantum yield relative to Coumarin 6 in ethanol. b Solid-state quantum yield relative to perylene 

10 wt% in PMMA. 
c Estimated from the optical absorption edge. d Formal reduction potentials (vs SCE). eEA= Eonset + 

4.4 (eV). f IP = EA + Eg (eV). 

 

Table 2. Electronic and optical properties of DDO-PPVBBOs P25 and P45. 

 

 To determine the electronic properties of P25 and P45, we performed cyclic 

voltammetry of polymer thin films in acetonitrile, using 0.1 M (Bu)4NPF6 as the 

electrolyte. The results are summarized in Table 2. For both polymers we observed quasi-

reversible reduction wave, but oxidation waves were not observed. We measured 

reduction onsets at -1.34 V versus SCE for both P25 and P45. Taking -4.4 eV as the SCE 

energy level relative to vacuum,
18 

we estimated electron affinity (EA) for both polymers 

to be 3.06 eV. The optical band gaps were 2.4 eV for P25 and 2.2 eV for P45. Using the 

optical band gaps, and the relation IP = EA + Eg (eV) ionization potential (IP) values of 

5.5 and 5.3 eV were estimated for P25 and P45 respectively. The band gaps measured for 

these new polymers were smaller than the band gaps for the known PBO derivative 
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poly(phenylenebenzo[1,2-d;5,4-d]bisoxazole), (Eg
opt

= 2.76 and Eg
ec

= 2.93 eV).
6a, 6e

  

4.5 CONCLUSIONS 

 In summary, we prepared new organic soluble derivatives of polybenzobisoxazoles 

using the flexible side chain approach. The resulting polymers were soluble in several 

organic solvents and still maintained excellent thermal stability.  These mild reaction 

conditions facilitated the synthesis of new polymers that were previously unattainable 

through conventional synthesis. As a result, we now have the opportunity to modify the 

thermal, optical, and electronic properties of these polymers in an unprecedented manner, 

facilitating their optimization for use in organic semiconducting applications. 
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4.8 SUPPORTING INFORMATION 

 
Figure S1. 

1
H NMR of monomer 2. 

 
Figure S2. 

13
C NMR of monomer 4. 
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Figure S3. 

1
H NMR of monomer 4. 

 

 
 

Figure S4. 
13

C NMR of monomer 4. 
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Figure S5. 
1
H NMR of P25 in THF-d8. 

 

Figure S6. 
1
H NMR of P23 in THF-d8. 
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Figure S7. TGA curves of P25 (left) and P45 (right).  

Scanning rates was performed from RT – 180°C at 20°C/min, then isothermal heating at 

180°C for 40 minutes, followed by heating from 180°C – 900°C at 20°C/min in air.  
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Figure S8. Cyclic voltammogram of P25 (left) and P45 (right).  

Measurements performed on thin films in 0.1M TBAPF6 in acetonitrile using Ag/AgCl as 

reference electrode at a scan rate of 100 mV/s. 
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CHAPTER 5 

 

Synthesis, Characterization and Photovoltaic Properties of Poly(thiophenevinylene-

alt-benzobisoxazole)s. 

 

Reproduced from Physical Chemistry Chemical Physics 2011, 13, 1338 with permission 

from the Owner Societies 
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5.1 ABSTRACT 

 

 Herein we report the synthesis of two solution processible, conjugated polymers 

containing the benzobisoxazole moiety. The polymers were characterized using 1H 

NMR, UV-Vis and fluorescence spectroscopy. Thermal gravimetric analysis shows that 

the polymers do not exhibit sigificant weight loss until approximately 300 °C under 

nitrogen. Cyclic voltammetry shows that the polymers have reversible reduction waves 

with estimated LUMO levels at -3.02 and -3.10 eV relative to vacuum and optical 

bandgaps of 2.04 - 2.17 eV. Devices based on blends of the copolymers and [6,6]-phenyl 
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C61 butyric acid methyl ester (PCBM) exhibited modest power conversion efficiencies. 

Theoretical models reveal that there is poor electron delocalization along the polymer 

backbone, leading to poor performance. However, the energy levels of these polymers 

indicate that the incorporation of benzobisoxazoles into the polymer backbone is a 

promising strategy for the synthesis of new materials. 

5.2 INTRODUCTION 

 The direct conversion of sunlight into energy using photovoltaic cells (PVC)s has 

been recognized as an essential component of future global energy production. As a result 

of their optical and electronic properties, conjugated organic materials are sought after to 

replace inorganic materials in PVCs. This is due to the many attractive features of 

organic materials, such as the ability to tune their electron properties for specific 

applications through chemical synthesis and the simplicity of processing using solution-

based techniques.
1, 2

 One current challenge in the field is the development of conjugated 

polymers with high electron affinity and/or low band gaps for use in bulk heterojunction 

PVCs.
3
 High electron affinity can reduce the energy loss during the transfer of electrons 

from the donor to [6,6]-phenyl C61 butyric acid methyl ester (PCBM), a widely used 

electron acceptor, increasing the output power of the PVC.
4-6

 Similarly, low band gap 

allows for the absorption of photons at longer wavelengths, increasing the percentage of 

solar energy that can be harvested.
7, 8

 Currently, a popular design strategy for the 

manipulation of the energy levels of conjugated   polymers   is  the  synthesis of so called   

D-A donating (D) and electron-accepting (A) moieties.
9
 In these polymers the 

hybridization of the LUMO from the acceptor copolymers, which are comprised of 

alternating electron- moiety and the HOMO from the donor moiety can be used to reduce 

the polymers band gap and/or vary its energy levels.
9-11

 

 Poly(3-alkylthiophene)s are widely studied due to their excellent thermal and 

environmental stability, high hole mobility, and solution processibility.
12, 13

 Accordingly, 

electron-rich alkylthiophenes have been widely used as donor moieties in D-A polymer 

architectures.
11, 14-16

 Fully conjugated rigid-rod polybenzobisoxazoles (PBBO)s are 

multifunctional materials widely known for their excellent tensile strength, thermal 



www.manaraa.com

 113 

stability,
17, 18

 efficient electron transport,
19, 20

 photoluminescence,
21-27

 and high electron 

affinity.
21, 28-31

 Thus the incorporation of the benzobisoxazole (BBO) moiety into D-A 

polymer architectures is beneficial due to its high electron affinity.
16

 Despite these 

advantageous properties, the use of PBBO has been limited, largely due to their poor 

solubility, which requires PBBO to be processed from acidic solutions. Furthermore, the 

harsh reaction conditions for the synthesis of PBBO prevents their derivatization.
18, 31-36

 

To realize the untapped potential of the BBO moiety for the development of novel 

conjugated polymers, we recently developed an alternative approach toward BBO 

synthesis using mild conditions.
37

 As a result, we can now synthesize soluble PBBO by 

copolymerizing them with aryl monomers bearing flexible side-chains.
37, 38

  

 Herein we report the synthesis of two new polymers, namely poly(3,4-

didodecylthiophene vinylene)-alt-benzo[1,2-d;5,4-d’]bisoxazole]-2,6-diyl (PTVcBBO) 

and poly(3,4-didodecylthiophene vinylene)-alt-benzo[1,2-d;4,5-d’]bisoxazole]-2,6-diyl 

(PTVtBBO).  The unique combination of the BBO, thiophene, and vinylene moieties 

greatly enhances the properties of the resultant polymer by: 1) incorporating vinylene 

linkages to minimize steric interactions between consecutive aromatic rings, reducing the 

band gap further;
39-41

 2) increasing rotational freedom of the polymer backbone, 

improving the polymer’s solubility; and 3) adding alkyl side chains along the polymer 

backbone to increase solubility significantly. 

5.3 RESULTS AND DISCUSSION 

 
 

Scheme 1. Synthesis of PTVcBBO and PTVtBBO. 
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5.3.1 Polymer synthesis and physical characterization.  

 The synthesis of PTVcBBO and PTVtBBO is shown in Scheme 1. The robust BBOs 

were stable under basic conditions, allowing for their polymerization using the Horner-

Wadsworth-Emmons (HWE) reaction. These reaction conditions were selected because 

the HWE reaction is known to produce polymers with all trans-double bonds. This 

method also prevents cross-linking, incomplete double bond formation, and other 

undesirable structural defects. The optimum reaction conditions were to dissolve both 

3,4-didodecyl-2,5-thiophenedicarboxaldehyde
42

 and a BBO monomer
37

 in THF under an 

inert atmosphere, then add 2.2 equivalents of potassium tert-butoxide, and stir the 

reaction at room temperature for 3 days. Using these conditions the polymers were 

obtained in satisfactory yields, after removing low molecular weight material via Soxhlet 

extraction. Both polymers were highly soluble in standard organic solvents, such as THF, 

m-cresol and chloroform at room temperature, facilitating characterization using 
1
H 

NMR spectroscopy and gel permeation chromatography (GPC). The 
1
H NMR spectra for 

both polymers were in agreement with the proposed polymer structures. The weight-

averaged molecular weights (Mw) of the polymers were good in both cases, with 

monomodal weight distributions. Thermogravimetric analysis revealed that both 

polymers were thermally stable with 5% weight loss onsets occurring at approximately 

300 °C under air. The results are summarized in Table 1. 

 

 Yield % Mw
a 

Mw/Mn Td (ºC) 
b 

PTVcBBO 78 13,400 2.4 303 

PTVtBBO 87 10,800 2.7 298 

a Molecular weights and polydispersity indexes determined by GPC versus polystyrene standards using THF as the 

eluent. b Temperature at which 5% weight loss is observed by TGA under N2 with a heating rate of 10 ºC/min. 

 

Table 1. Molecular weights and thermal properties of the PTVBBOs. 

5.3.2 Optical properties.  

 The photophysical characteristics of the polymers were evaluated by UV-vis 

absorption and fluorescence spectroscopy both as dilute solutions in THF and thin films. 

The normalized absorbance and emission spectra for the polymers in solutions and thin 
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films are shown in Figure 1 and the data is summarized in Table 2. In solution, the UV-

vis spectra of both polymers have a single broad absorbance bands, whereas the thin film 

absorbance spectra for both polymers are slightly broader. The absorbtion maximum for 

PTVtBBO was red-shifted by 27 nm relative to the absorbance maximum for PTVcBBO. 

In both cases the UV-vis spectra did not exhibit a second low energy peak typically 

associated with intramolecular charge-transfer (ICT) transitions within D-A 

copolymers.
43, 44

  

 

 
 

Fig. 1 Uv-vis absorption and PL spectra of a: PTVcBBO (top) and b: PTVtBBO (bottom) 

in THF and as films spun from THF. 

 

 The optical band gaps for the polymers were estimated from absorption onsets and 

are summarized in Table 2. In solution the photoluminescence spectra of both polymers 

exhibit vibrational structure in the form of additional low energy bands. As with the UV-

vis spectra the emission spectra of the PTVtBBO is red-shifted relative to the PTVcBBO. 

As films, the emission spectra of the polymer thin films were considerably red-shifted, 
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relative to corresponding solution spectra. This phenomenon is most likely caused by π-

stacking and excimer emission. When the polymers were mixed with PCBM, the 

fluorescence was quenched, suggesting efficient charge transfer between the two 

materials. 

 

 Solution Film 

Polymer abs(nm) em 

(nm) 

abs 

(nm) 

em 

(nm)
 

onset(nm) 



Eg
opt(eV)

a
 



Eonset
red b

 LUMO
 

HOMO
 

d
 

PTVcBBO 480 497 

(536) 

527 

(562) 

635 571 2.17 -1.34 -3.02 -5.19 

PTVtBBO 507 525 

(565) 

556 

(601) 

653 608 2.04 -1.26 -3.10 -5.14 

aEstimated from the optical absorption edge. bOnset reduction potentials (vs Fc). c LUMO =   + 4.8 (eV). d HOMO = 

LUMO -   (eV). 

 

Table 2. Electronic and Optical and Electronic Properties of PTVcBBO and PTVtBBO. 

5.3.3 Electrochemical properties. 

 

 
 

Fig. 2 Cyclic voltammogram of the PTVcBBO (bottom) and PTVtBBO (top) thin films 

on platinum electrodes with a scan rate of 50 mV s
-1

. 

 

 The electrochemical properties of the polymers were investigated by cyclic 

voltammetry (CV). The data was obtained from polymer thin films on a platinum 
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working electrode, in acetonitrile, using 0.1 M Bu4NPF6 as the electrolyte and an Ag/Ag
+
 

reference electrode. The onsets were referenced to Fc/Fc
+
. The CV curves are shown in 

Figure 2 and the results are summarized in Table 2. Both polymers exhibited fully 

chemically reversible reduction waves, whereas   oxidation waves were not observed for 

either polymer. Taking -4.8 eV as the ferrocene energy level relative to vacuum,
44

 we 

estimated the LUMO levels for the polymers (Table 2). Since oxidation onsets could not 

be measured for the polymers, the highest occupied molecular orbital (HOMO) values 

were calculated using the optical band gaps and the LUMO levels. Previously, we 

reported band gaps of 2.2-2.4 eV for poly(2,5-bisdodecyloxyphenylenevinylene-co-

benzobisoxazole)s.
38

 Switching the dialkoxybenzenes for the more electron-rich 

thiophenes changes the position of the HOMO, resulting in a decrease in the bandgap of 

the polymer. 

5.3.4 Photovoltaic properties.  

 

Fig 3. Current-voltage characteristics of PTVBBO: PCBM photovoltaic 

 

Fig 4. Normalized quantum efficiency vs. wavelength curve of PTVtBBO:PCBM cells. 

Inset shows the device structure. 
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 The chemically reversible reduction waves in the cyclic voltammetry suggested that 

the PTVBBOs could be used as acceptor materials in PVCs with regioregular poly(3-

hexylthiophene) (rr-P3HT) one of the most widely studied conjugated polymers.
12, 13

 

However the generally accepted minimum difference between the LUMO levels of the 

donor and the acceptor is ~0.4 eV.
45, 46

 Since rr-P3HT has a LUMO of approximately -3.0 

eV,
4, 47-49

 the LUMO values of -3.02 and -3.10 eV for PTVcBBO and PTVtBBO 

respectively were insufficient to facilitate efficient electron transfer. However, the energy 

levels of these polymers suggest that they would be suitable candidates for use in bulk 

heterojunction PVCs with PCBM. We fabricated such PVCs from (1:1) PTVBBO:PCBM 

blends, using both PTVcBBO and PTVtBBO. We selected ortho-dichlorobenzene (o-

DCB) as the solvent due to its high boiling point, which previously has resulted in better 

self-organization of conjugated polymers, enhancing the performance of PVCs.
50-52

 

Figure 3 shows the current-voltage (I-V) characteristics of our devices under illumination 

of 100 mW/cm
2
. For both polymers the open circuit voltages were comparable, 0.35 V 

and 0.40 V for PTVcBBO and PTVtBBO respectively. Overall, PTVtBBO-based PVCs 

had much better performance than PTVcBBO-based PVCs with a short-circuit current of 

0.66 mA/cm
2
 and a fill factor of 31%. In comparison, PTVcBBO-based PVCs had a 

short-circuit current of 0.12 mA/cm
2
 and fill factor of 26%. These results are summarized 

in Table 3. The superior performance of PVCs based on PTVtBBO in comparison to 

PTVcBBO can be attributed to higher electron affinity and smaller band gap of 

PTVtBBO. 

 

Polymer Voc(V) Jsc (mA/cm
2
) FF PCE (%) 

PTVcBBO 0.35 0.12 26% 0.01 

PTVtBBO 0.40 0.66 31% 0.08 

Polymers films were prepared from solutions in o-DCB 10 mg/mL 

 

Table 3. Photovoltaic Performance of PTVBBOs with PCBM. 

 

 While the performance of the PTVtBBO devices is lower than other state-of-the-art 
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conjugated polymers, we note that these PVCs are the first to be fabricated from 

copolymers containing BBOs and thiophene. As a result, many processing parameters 

such as choice of solvent (or solvent mixtures), annealing, annealing temperatures, and 

polymer/PCBM ratios are not yet optimized. All of these parameters are critical, and their 

optimization alone has led to drastic improvements in the power conversion efficiencies 

of PVCs, based on other conjugated polymers such as rr-P3HT and poly[N-9′-

heptadecanyl-2,7- carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′- benzothiadiazole)] 

(PCDTBT). In part, the poor performance of the PVCs fabricated in this report can be 

ascribed to a non-optimal phase separation, as shown in the atomic force microscopy 

AFM phase image (Supporting Information). Aggregates of size 50-100 nm are observed, 

which are much larger than typical exciton diffusion lengths of conjutated polymers (~10 

nm). Further evidence of the phase separation can be seen by Raman spectroscopy. When 

PTVtBBO film are more crystalline, the thiophene rings are, on average, more closely 

stacked. This should lead to narrowing of the peaks.
53, 54

 The spectra of the neat 

PTVtBBO film shows peaks at 1560-1570, 1180 and 1230 cm
-1

. In comparison, 

PTVtBBO:PCBM blend films exhibited broadening of these peaks which indicates a 

decrease in the crystallinity of PTVtBBO film. This loss of crystallinity can be attributed 

to very fine intermixing of PTVtBBO and PCBM domains, limiting the PTVtBBO 

crystallites to nanometer scale. Such poor separation or nanoscale fine mixing of phases 

prevents the formation continuous pathways for carrier transport to the electrodes, 

reducing the device efficiency. Although we could dissolve PTVtBBO in DCB, this 

solution does not pass through 0.2 micron filter as readily as solutions of rr-P3HT in 

DCB. This suggests that there are large aggregates of polymer in the solution. Thus 

improving the processibility of BBO polymers is expected to improve performance. Due 

to the superior performance of PVCs based on PTVtBBO in comparison to PTVcBBO, 

we evaluated the impact of solvent choice on the mobility of PTVtBBO. We first 

prepared thin films by dissolving PTVtBBO in four different solvents (o-

dichlorobenzene, chlorobenzene, chloroform, and toluene), and the spun thin films from 

these solutions. We measured current-density–voltage (I–V) characteristics of hole-only 

diodes of these films and then extracted hole mobilities using the space-charge limited 
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current (SCLC) model (Supporting Information). Not accounting for the electric field 

dependence of the SCLC model,
55-57

 we found zero-field hole mobilities to be 1.76 x 10
-5

 

cm
2
V

-1
s

-1
 in chlorobenzene, 3.8 x 10

-5
 cm

2
V

-1
s

-1
 in o-dichlorobenzene, 5.09 x 10

-5
 cm

2
V

-

1
s

-1
 in toluene, and 3.33 x 10

-5
 cm

2
V

-1
s

-1
 in chloroform. These values are of the same 

order of magnitude as those reported in literature for rr-P3HT using a similar hole-only 

diode architecture.
58, 59

 These results indicate that PTVtBBO is promising for use as an 

efficient hole  transporter in PVCs.
50-52

 Given its poor performance in PVCs, we did not 

evaluate the mobility of PTVcBBO. 

5.3.5 Theoretical Electronic Structure Calculations 

 To understand the difference in the performance between PTVcBBO and PTVtBBO 

we performed theroretical calculations using density functional theory. While the 

superior performance of PVCs based on PTVtBBO in comparison to PTVcBBO can be 

attributed to higher electron affinity and smaller band gap of PTVtBBO, the small 

difference between the two suggests that other factors are involved. The geometries of 

model oligomers (n=1, 2, 3, and 4) for PTVcBBO and PTVtBBO were optimized at the 

density functional theory B3LYP/6-31G* level in which the didodecyl substituents were 

replaced with hydrogen atoms to reduce computational costs.  The optimized geometries 

indicate that the model oligomers are planar, which should optimize conjugation and 

facilitate delocalization of electrons. The geometries of the model dimers indicated that 

the PTVcBBO structure had a much larger dipole moment (6.7 D) than that of the 

PTVtBBO (3.1 D). This phenomenon can be explained by the differences in the 

symmetry of the two BBOs. The trans-BBO moiety in the PTVtBBO molecule has three 

mirror planes and a center of inversion (C2h point group) whereas the cis-BBO moiety in 

the PTVcBBO structure only possesses two mirror planes (C2v point group). These 

symmetry differences could impact the electronic properties of the two polymers.  

 The HOMO, LUMO, band gap, and lowest lying singlet excited states (S1) were 

computed at the TDDFT B3LYP/6-31G* and ZINDO/S60 levels, respectively. Polymeric 

results were generated by fitting the aforementioned set of oligomers (n = 1, 2, 3, and 4) 

with the Kuhn expression
61, 62
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                                        0

0

1 2 cos
1

k
E E

k N


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
                      (1) 

where E0 is the transition energy of a formal double bond, N is the number of double 

bonds in the oligomer (thought to be identical oscillators), and 0k k  is an adjustable 

parameter (indicative of the strength of coupling between the oscillators). These fits were 

performed on both sets of data and are shown in Figure 5. The results of these fits are 

summarized in Table 4. 

 

 

Fig 5. Kuhn fits for a.) HOMOs, LUMOs, (TDDFT level) and b.) bandgaps, Eg, (TDDFT 

level) and first excited states, S1, ( ZINDO/S level) for PTVcBBO and PTVtBBO. 

 

 HOMO
a 

LUMO
a 

Eg
a 

S1
b 

PTVcBBO -5.25 (1.2%) -2.88 (4.6%) 2.06 (5.1%) 2.32 (6.9%) 

PTVtBBO -5.16 (0.4%) -2.99 (3.5%) 1.87 (9.1%) 2.22 (8.8%) 

aComputed from TDDFT B3LYP/6-31G* level. bComputed from the ZINDO/S level. 

 

Table 4. HOMO and LUMO orbital energies, band gaps, and energies of the lowest lying 

singlet excited states in eV derived from the Kuhn fits of the two data sets with percent 

error relative to experiment in parentheses.   
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 The computational results for the HOMO and LUMO show relatively good 

agreement with experimental values. The bandgaps obtained at the DFT level are 

signficantly underestimated which is a consequence of the overestimation of the chain-

length dependence of the transition energies.
61

 However, they are comparable in 

deviation from experiment as the ZINDO results whose level of theory was parametrized 

to reproduce the band gaps for a large number of compounds in apolar solvents.
60

 In 

either case, these results confirm that the electronic properties of PTVcBBO and 

PTVtBBO are different as suggested by their point groups. While PTVtBBO has a higher 

HOMO, a lower LUMO and thus a smaller band gap than PTVcBBO, neither polymer 

has a high enough LUMO for use as an acceptor polymer with rr-P3HT as the donor in 

PVCs.  

 

 

Fig 6. HOMO and LUMO frontier orbitals of the PTVcBBO, and PTVtBBO dimers and 

P3HT oligomer, obtained at the DFT B3LYP/6-31G* level. 

 

 The HOMO and LUMO wavefunctions for model dimers (n=2) of PTVcBBO and 
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PTVtBBO are shown in Fig. 6 along with the wavefunction for an oligomer (n=8) of rr-

P3HT whose hexyl groups have been replaced with methyl groups to reduce 

computational cost. In all cases the HOMO wavefunction is delocalized along the entire 

dimer. In contrast, the LUMO wavefunctions for PTVcBBO and PTVtBBO illustrate that 

the electron density of these materials is centered on the thiophene moieties, instead of 

being localized on the electron- accepting BBO subunits. This is the opposite of what is 

commonly seen in polymers which possess alternating donor and acceptor subunits.
43, 63, 

64
 In these polymers the electron density of the LUMO is localized on  the  electron  

accepting  group.   The  fact  that  the  LUMO wavefunction for PTVcBBO and 

PTVtBBO is localized on the thiophene moieties justifies the PVC results in that 1) the 

frontier orbitals demonstrate a similar localization as is found in P3HT, leading to 

electron donating rather than electron accepting behavior in this system;
65

 2) the LUMO 

wavefunction  of  PTVtBBO  is  more  delocalized that that of PTVcBBO, in that more 

density is located on the acceptor moiety, elucidating the origin of better performance in 

the PVCs; 3) the lesser extent of delocalization in the LUMO wavefunction of PTVtBBO 

in comparison to that of rr-P3HT explains why the performance of PTVtBBO was not as 

good as rr-P3HT despite the higher LUMO level. Thus the development of new polymers 

that exhibit a higher degree of delocalization from the donor moieties to the BBO moiety 

in the LUMO could result in improved performance in PVCs. 

5.4 CONCLUSIONS 

 In conclusion two new organic-soluble, thiophene-BBO copolymers have been 

synthesized. Both polymers were show reversible reduction, while PTVtBBO behaved as 

a donor in bulk heterojunction PVCs with PCBM. DFT calculations reveal that both 

polymers have high electron affinities, but poor delocalization in the LUMO 

wavefunction. Thus, while the polymers were designed to be a D-A system, the thiophene 

rings do not donate electron density to the BBO moieties. The narrow-band gap, low 

lying LUMO and reversible electrochemistry of these polymers suggests that BBOs are 

useful building blocks for the synthesis of conjugated polymers. Future research will 

focus on increasing the extent of delocalization in these polymers. 
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5.5 EXPERIMENTAL SECTION 

 The monomers 2,6-dimethylbenzo[1,2-d;5,4-d’]bisoxazole-diethylphosphonate 

ester,
37

 2,6-dimethylbenzo[1,2-d;4,5-d’]bisoxazole-diethylphosphonate ester
38

 and 3,4-

didodecylthiophene-2,5-dicarboxaldehyde,
42

 were all synthesized according to the 

previously reported methods. Tetrahydrofuran was dried using an Innovative 

Technologies solvent purification system. All other compounds were purchased from 

commercial sources and used without further purification. Nuclear magnetic resonance 

spectra were obtained on a Varian 400 MHz spectrometer. All samples were referenced 

internally to the residual protonated solvent and the chemical shifts are given in δ, 

relative to the solvent. Gel permeation chromatography (GPC) measurements were 

performed on a Viscotek GPC Max 280 separation module equipped with three 5μm I-gel 

columns connected in a series (guard, HMW, MMW and LMW) with a refractive index 

detector. Analyses were performed at 35 °C using THF as the eluent with the flow rate at 

1.0 mL/min. Calibration was based on polystyrene standards. Fluorescence spectroscopy 

and UV-Visible spectroscopy were obtained using polymer solutions in THF, and thin 

films were spun from these solutions. Both polymers were excited at their respective 

emission maxima. Thermal gravimetric analysis measurements were performed using TA 

instruments Model Q50, within the temperature interval of 30 ºC - 650 ºC, with a heating 

rate of 20 ºC/minute, under ambient atmosphere. Cyclic voltammograms were performed 

in 0.1 M tetrabutylammonium hexafluorophosphate using 0.01 M AgNO3 in acetonitrile 

reference electrode. The potential values obtained versus the Ag
+
 were converted to the 

ferrocene (Fc) reference. 

5.5.1 General Methods for Polymer Synthesis.  

 We dissolved the BBO monomer (460 mg, 1.00 mmol) and 3,4-didodecylthiophene 

(503 mg, 1.00 mmol) in 15 mL of THF. Then we added a 1 M solution of potassium tert-

butoxide in THF (2.5 mL, 2.5 mmol) to the solution and the mixture, and we stirred the 

solution at room temperature for 48 h to obtain an opaque, dark red solution. Then we 

added an additional 10 mL of THF and stirred the reaction for an additional 72 hours. We 

then precipitated the solution by pouring it into MeOH and collected the resulting red-
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orange solid by filtration. We purified the polymer via Soxhlet extraction  washing first 

with MeOH for 8 hours, followed by hexane for 8 hours and lastly THF for 8 hours. The 

polymer was obtained upon evaporation of the THF solution. 

 PTVcBBO (78% yield). 
1
H-NMR (400 MHz, THF-d8): δ 0.89 (m, CH3-), 1.30(br 

m, -(CH2)4-), 2.39-2.77 (br m, -Ar-CH2-), 6.19, 7.75 (br s, vinylic peaks), 7.85 and 7.95 

(br, s., Ar-H). 

 PTVtBBO (87% yield). 
1
H-NMR (400 MHz, THF-d8): δ 0.89 (m, CH3-), 1.30 (br 

m, -(CH2)4-), 2.79-2.95 (br m, -Ar-CH2-), 6.91, 7.79 (bs, vinylic peaks), 7.98 (br m, Ar-

H). 

5.5.2 Fabrication and Characterization of Polymer Solar Cells. 

 Photovoltaic cells were fabricated from quartz slides coated with indium tin oxide 

(ITO) (Delta Technologies Inc.,). The slides were then cleaned by sonication in acetone, 

isopropanol, detergent, and de-ionized water. The slides were then dried under nitrogen 

and exposed to air plasma for one minute. Poly(3,4-ethylenedioxythiophene) 

(PEDOT:PSS) (Clevios PTM) was filtered through a 0.45 μm and spin-coated (600 rpm 

for 60 s) onto the slides to serve as a hole transport layer. The slides were then dried on a 

a hot plate at 120 °C for 10 minutes. After cooling, the slides were transferred to a glove 

box with and Ar atmosphere. PTVtBBO and PTVcBBO were mixed with PCBM (Sigma 

Aldrich) in 1:1 weight ratio. Total solute concentration in all solutions was 20 mg/ml. o-

DCB was the solvent used for PVCs and hole-mobility measurements. Additionally, 

chloroform, toluene and chlorobenzene were also used to mobility measurements. All 

active-layer solutions were passed through 0.22 μm PTFE syringe filters (Whatman) and 

spin coated on the PEDOT:PSS layer at 600 rpm for 60 s. The samples were then dried 

under a petri dish. Finally, aluminum electrode (100 nm) was thermally evaporated for 

PVCs, and gold electrode (100 nm) was evaporated in an E-beam evaporator for hole-

mobility measurements. The area of metal electrode for both types of devices was 4 mm
2
. 

 The current density–voltage (I–V) characteristics of the PVCs and hole-only diodes 

were measured using a Keithley 276 source-measurement unit and HP 4156A 

semiconductor parameter analyzer, respectively. The PVCs were illuminated through the 

ITO side using a GE ELH bulb, the intensity of which was adjusted to 100 mW/cm
2
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using a crystalline silicon reference cell. 

 For optical measurements, solutions were spin-coated onto quartz slides to form 

active layers. The optical absorption spectra of these films were recorded using a UV-VIS 

spectrophotometer (Cary 50 Bio). The steady state PL spectra were measured using Spex 

Fluorolog Tau-3 fluorescence spectrophotometer.  

5.5.3 Theoretical Calaculations. 

 All of the calculations on these oligomers were studied using the Gaussian 03W66 

program package with the GaussView 4 GUI interface program package. The electronic 

ground states were optimized using density functional theory (DFT), B3LYP/6-31G*. 

Excited states were generated through time dependent density functional theory (TD-

DFT) applied to the optimized ground state for each oligomer. The HOMO, LUMO, band 

gap, first ten excited states, frontier orbitals and UV-Vis simulations were generated from 

these excited computations. Finally, electrostatic potential maps were created using a 

coarse setting and an isovalue of 0.03. 
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5.8 SUPPORTING INFORMATION 

 

 

Figure S1. TGA curves of PTVcBBOand PTVtBBO. 
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Fig S2. AFM phase image of PTVtBBO thin film. phase images. Scan Size: 500 nm 

square. 

 

Fig S3. Current-voltage characteristics of PTVtBBO hole only device sandwiched 

between ITO/PEDOT: PSS and gold electrodes. Thicknesses of the films were 140 nm 

(chlorobenzene), 137 nm (DCB), 176 nm (toluene), and 179 nm (chloroform), as 

measured by AFM. 
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Figure S4. Raman spectra for PTVtBBO only and PTVtBBO:PCBM blend films.  
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CHAPTER 6 

 

Efficient Synthesis of Benzobisazole Terpolymers Containing Thiophene and 

Fluorene. 
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6.1 ABSTRACT 

 
 We report the synthesis and lumuminescence properties of three novel polymers 

composed of 9,9-dioctylfluorene and a donor-acceptor-donor (D-A-D) triad of a 

benzobisazole moiety sandwiched between two octylthiophenes. The requiste monomers, 

2,6-bis(5-bromo-3-octylthiophen-2-yl)-benzobisazoles were obtained efficently via the 

Lewis acid catalyzed cyclization of 2-bromo-3-octyl-5-(triethoxymethyl)thiophene and 
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the corresponding diamino diols or dithiols. The polymers were synthesized in excellent 

yield by the Suzuki coupling reaction between the D-A-D benzobisazole monomers and 

9,9-dioctylfluorene bisboronic acid. Alkyl side chains provided the polymers with 

solubility in common organic solvents, enabling characterization using gel permeation 

chromatography, 1H NMR, UV-Vis and fluorescence spectroscopy. The polymers have 

optical bandgaps of 2.43 - 2.63 eV and HOMO levels at -5.54 to -5.65 eV relative to 

vacuum as determined by UV visible and photoelectron spectroscopy respectively. Light-

emitting diodes using blends of the copolymers in a poly(N-vinyl carbazole) matrix 

yielded blue-green emission with luminous efficiencies of 0.86 Cd/A at ~505 nm. This 

efficient and high-yielding route is a promising aproach for the synthesis of polymers 

containing benzobisazole moieties. 

6.2 INTRODUCTION 

 As a result of their optical and electronic properties, conjugated polymers are finding 

widespread use in semiconducting applications such as field-effect transistors, light-

emitting diodes and photovoltaic cells.
1
 The benefits of conjugated polymers include the 

ability to tune their optical and electronic properties through chemical synthesis and the 

ability to fabricate devices from them using solution based techniques. Among 

conjugated polymers, polyfluorenes are widely investigated for use in polymer light-

emitting diodes due to their excellent solubility, high solid state photoluminescence 

quantum yield and good charge carrier mobility. However, poly(9,9-dioctylfluorene) is a 

blue light emitting polymer with a large band gap (3.1 eV), a low electron affinity (EA = 

2.5 eV), and a high ionization potential (IP = 5.6 eV), which makes it difficult to inject 

both holes  and electrons into the polymer.
2
 

 One way to change the positions of the frontier orbitals is to copolymerize fluorene 

with electron-deficient comonomers.
3
 In this regard benzobisazoles, such as 

benzobisoxazole and benzobisthiazole are promising building blocks for the synthesis of 

novel materials. These electron-deficient heterocycles are known for improving the 

charge transport, photoluminescence, and third-order nonlinear optical properties of 

materials containing them.
4, 5, 6

 Recently, new materials based on a donor-acceptor-donor 
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(D-A-D) triad composed of a benzobisthiazole ring sandwiched between two 

alkylthiophenes have been reported.
7-10

 Organic field effect transistors using small 

molecules based on this D-A-D triad exhibited excellent hole mobility as a result of the 

materials’ high crystalinity.
8, 10

 Copolymers composed of this triad and alkylthiophenes 

also have excellent hole mobility when used in field-effect transistors
9
 and good 

performance in photovoltaic cells as a result of the polymers high ionization potential.
7
  

 Historically the synthesis of polybenzobisazoles requires strong acids or oxidants 

and high temperatures, limiting the types of substituents that can be incorporated into the 

polymer.
11, 12

 Thus, from a synthetic standpoint, a functional triad already containing the 

benzobisazole moiety is a useful building block as it enables the synthesis of conjugated 

polymers using transition metal catalyzed cross coupling reactions, instead of 

condensation polymerization. Unfortunately, the reported methods for the formation of 

this triad: the Stille coupling of 2,6-dibromo-benzo[1,2-d;4,5-d′]bisthiazole with 2-

trimethylstannyl-4-hexylthiophene
8
 or the acid-catalyzed condensation of 3-

octylthiophene-2-carboxylaldehyde with 2,5-diamino-1,4-benzenedithiol dihydrochloride 

both occur in low yields, minimizing its usefulness.
7
 Previously, we reported an efficient 

method for the synthesis of 2,6-disubstituted benzobisazoles using Lewis acid catalyzed 

cyclization of substituted orthoesters and corresponding diaminodiols or dithiols.
13

 These 

new building blocks have been used for the synthesis of novel poly(arylenevinylene)-alt-

benzobisazoles.
6, 14

 Based on our earlier success, we set out to develop an efficient 

approach for the synthesis of new monomers that would enable the synthesis of the 

polymers containing benzobisazole-arene single bonds. 

6.3 RESULTS AND DISCUSSION 

6.3.1 Synthesis and Physical Characterization 

 The synthetic approach for the D-A-D benzobisazole monomers is shown in Scheme 

1. 2,5-Dibromo-3-octylthiophene (1) was synthesized in two steps from 3-

bromothiophene according to a literature procedure.
15

 The Grignard metathesis reaction 

of 1 affords the interemediate 5-bromomagnesio-2-bromo-3-octylthiophene as the major 

product.
16

 Using the method described by Tschitschibabin,
17

 this intermediate is 
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Scheme 1. Synthesis of Benzobisazole Monomers and Polymers 

 

directly converted to 2-bromo-3-octyl-5-(triethoxymethyl)thiophene 2 without isolation. 

The orthoester 2 is a stable compound that is readily purified by vacuum distillation. The 

reaction conditions used for the synthesis of 2 enable the incorporation of a bromine at 

the 2-position of the thiophene ring at the start of the reaction sequence, reducing the total 

number of synthetic steps. The Lewis acid catalyzed cyclization of the orthoester 2 with 

4,6-diaminoresorcinol 3,
11

 2,5-diaminohydroquinone 4
18

 or 2,5-diaminobenzene-1,4-

dithiol 5
12

 in THF yielded the corresponding monomers 2,6-bis(4-octylthiophen-2-yl)-

benzo[1,2-d; 5,4-d']bisoxazole 6, 2,6-bis(4-octylthiophen-2-yl)-benzo[1,2-d; 4,5- 

d']bisoxazole 7, and 2,6-bis(4-octylthiophen-2-yl)-benzo[1,2-d; 4,5-d']bisthiazole 8. All 

of these monomers were solids that were readily purified by recrystalization, with 

isolated yields ranging from 82 to 86 %. 

 The synthesis of the fluorene-bisthienylbenzobisazole copolymers is also shown in 

Scheme 1. The polymerization of monomers 6, 7 or 8 with 2,7-bis(4,4,5,5-tetramethyl-

1,3,2-dioxaborolan-2-yl)-9,9-dioctylfluorene 9
19

 via the Suzuki cross-coupling reaction 

afforded the polymers P1, P2 and P3. All polymers were obtained in excellent yields 

after purification by Soxhlet extraction with methanol followed by hexanes, to remove 
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residual catalyst and low molecular weight material. The higher molecular weight 

material was soluble in standard organic solvents, such as THF, m-cresol and chloroform 

at room temperature, facilitating characterization using 
1
H NMR spectroscopy and gel 

permeation chromatography (GPC). The 
1
H NMR spectra for both polymers were in 

agreement with the proposed polymer structures (Figures S10 - S15 ESI). The number 

averaged degree of polymerization (DPn) ranged from 22 – 86 and all of the polymers 

showed excellent film forming ability. Thermogravimetric analysis revealed that both 

polymers were thermally stable with 5% weight loss onsets occurring above 290 °C 

under air (Figure S1). The results are summarized in Table 1. 

 

 Yield % Mw
a 

Mw/Mn Td (ºC) 
b
 Tg/ Tm (ºC)  

P1 94 80,900 3.2 295 110.3/ 230.1 

P2 88 74,200 2.5 292 108.1/ NA 

P3 97 21,500 1.8 341 108.4/ 257.6 

a Molecular weights and polydispersity indexes determined by GPC versus polystyrene standards using THF as the 

eluent. b Temperature at which 5% weight loss is observed by TGA under N2 with a heating rate of 20 ºC/min. 

Table 1 Molecular weights and thermal properties of the PTVBBOs. 

6.3.2 Electrochemical properties. 

 The electrochemical properties of the polymers were investigated by cyclic 

voltammetry (CV) and differential pulse voltammetry. The data were obtained from 

polymer thin films on a platinum working electrode in acetonitrile, using 0.1 M Bu4NPF6 

as the electrolyte and an Ag/Ag
+
 reference electrode. The onsets were referenced to 

Fc/Fc
+
. All of the polymers exhibit measureable and reproducible oxidation and reduction  

processes.  The   HOMO levels were also determined using ultraviolet photoelectron 

spectroscopy (UPS). This technique determines the highest occupied molecular orbital 

(HOMO) level in organic thin films by bombarding the sample with ultraviolet photons 

and measuring the kinetic energies of the ejected valence electrons.
20

 Thus the HOMO 

values obtained using this method are very accurate. The results are summarized in Table 

2. The values obtained for the HOMO levels from the CV waves are in good agreement 

with the values obtained using UPS. The electrochemical bandgaps are somewhat larger 
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than the optical bandgaps, but are within reasonable limits.  

 It was anticipated that structural differences of the benzobisazoles would result in 

different optical properties. The isomeric benzoxazole polymers P1 and P2 have different 

arrangements of oxygen atoms around the central benzene ring. This modification 

impacts the symmetry of the monomers, their dipole moments and ultimately impacts the 

optoelectronic properties of the resulting polymers. Similarly, the benzobisthiazole 

polymer P3, is structually analogous to P2 with sulfur atoms replacing the oxygen atoms. 

Since, sulfur has a lower electronegativity than oxygen and a similar electronegativity to 

the carbon atom the electron density is more equally shared between sulfur and carbon. 

Thus the π-orbitals will be more delocalized. Additionally the empty d-orbitals of the 

sulfur atom can contribute to the molecular π-orbitals decreasing the energy of the π-π* 

transition.
5, 21

 Based on the UPS data it appears that changing the position of the oxygen 

atoms destabilizes the HOMO level, while slightly stabilizing the LUMO level. Whereas 

exchanging the oxygen atoms for sulfur stabilizes both the HOMO and LUMO levels.  

 Overall, the LUMO values of P1, P2, and P3 (-2.71 to -2.85 eV), are also higher 

than those reported previously for the related PFO3, a copolymer of 9,9-dioctylfluorene 

and 4,7-dithien-5-yl-2,1,3-benzodiathiazole (-3.53 eV),
22

 since benzobisazoles are weaker 

acceptors than benzothiadiazoles. The HOMO values for P1, P2, and P3 of -5.54 to -5.63 

eV are more negative than those reported previously for the related poly(9,9-dioctyl-

fluorenevinylene-co-benzobisoxazole)s,
6
 which had HOMO values of -5.29 to -5.36 eV. 

We attribute this to exchanging the vinylene linkage between the benzobisazole and 

fluorene moieties for a thiophene ring.  

6.3.3 Optical and electronic properties.  

 The photophysical characteristics of the polymers, both as dilute solutions in 

chloroform and thin films, were evaluated by UV-vis absorption and fluorescence 

spectroscopy. The normalized absorbance and emission spectra for the polymers as 

solutions and as thin films are shown in Figure 1; the data are summarized in Table 2. In 

solution, the spectra for all the polymers exhibit a single broad absorbance band. P2 has a 

max at approximately 418 nm; relative to P2 the max for P1 was blue-shifted 8 nm to 410 
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nm and the max of P3 was red-shifted 16 nm to 434 nm. The thin film absorbance spectra 

for all of the polymers were broader than their solution counterparts, and show some 

weak vibronic coupling. The onsets of absorption for the polymers were obtained from 

the UV-vis spectra of polymer films and ranged from 471 to 511 nm, resulting in optical 

band gaps of 2.43 - 2.64 eV. None of the UV-vis spectra exhibited a second low energy 

peak typically associated with intramolecular charge-transfer transitions within D-A 

copolymers.
23

  

 

 Solution Film 

Polymer 
abs

max(nm) 
em

max 

(nm) 


abs

max 

(nm) 


em

 

max 

(nm)
 

   

Eg
opt 

(eV)
a
 

   

Eonset
ox  

(eV)
b
 

   

Eonset
red

 
(eV)

 b
 

HOMO
 

(eV)
c
 

LUMO
 

(eV)
 d

 

P1 410 461 410 482 2.64 0.79 -1.95 -5.59
c
/ 

-5.63
d
 

-2.85
e
/ 

-2.99
f
 

P2 418 471 439 524 2.52 0.82 -2.09 -5.62
c
/ 

-5.54
d
 

-2.71
e
/ 

-3.02
f
 

P3 434 487 456 538 2.43 0.67 -1.87 -5.47
c
/ 

-5.59
d
 

-2.93
e
/ 

-3.16
f
 

a Estimated from the intersection of absorption and fluorescence in the solid state.. 
b Onset of potentials (vs Fc). c 

HOMO= -(

   

Eonset
ox

 + 4.8) (eV). d From UPS. e LUMO = -(

   

Eonset
red

 + 4.8) (eV). f LUMO = HOMO (UPS) + 

   

Eg
opt (eV). 

Table 2. Electronic and Optical Properties of poly(arylenebenzobisazoles). 

 

 In solution the fluorescence spectra of the polymers is characterized by one strong 

emisson peak with a shoulder. The emission spectra of the polymer thin films were 

considerably red-shifted, relative to the corresponding solution spectra. This phenomenon 

is most likely caused by geometrical changes between the polymer in solution and in 

film.  

 In solution the 
abs

max of the benzobisoxazole polymer P1 is blue-shifted relative to 

the related poly(fluorene-co-benzobisoxazole)s (458 nm), althought the later was 

measured as a solution in methane sulfonic acid, which protonates the polymer.
24

 

Whereas the 
em

max of 468 nm is the same as the reported value of 468 nm. In contrast, 

the 
abs

max of the benzobisthiazole polymer P3 is red-shifted relative to the related the 

poly(fluorene-co-benzobisthiazole) (409 nm).
25

 The emission spectra for this polymer 
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was not reported. The 
abs

max of the benzobisoxazole polymers P1 and P2 are blue-shifted 

relative to those reported previously for the related poly(fluorenevinylene-co-

benzobisoxazole)s (450 - 470 nm),
6
 whereas the 

em
max of 461 - 471 nm are similar to the 

reported values, indicating that the thiophene π-bridges have little impact on the emission 

spectra.  

 

 

Fig. 1 UV-vis absorption and PL spectra of the polymers in: a) solution (top) and b) thin 

film (bottom). 
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6.3.4 Solid-state morphology 

 The thin films were analyzed by X-ray diffraction. The diffraction patterns for the 

polymers are shown in (Figure S3, ESI) The pattern for P1 does not exhibit any peaks, 

indicating a lack of regular spacing in the film. X-ray analyses of small molecules 

containing cis-benzobisoxazole indicates that it has a slight bend along the 2,6 axis.
13

 The 

reason for a lack of order in P1 may be due to this bent structure. P3, however, and P2, 

albeit to a lesser extent, have peaks corresponding to a regular spacing of 15.5 Å. This 

number is slightly larger than the length of one octyl chain. This suggests a spatial 

arrangement where octyl chains on neighboring polymers intercalate to some degree. 

This type of spacing can be seen in other 9,9-dioctylfluorene copolymers.
26

  

6.3.5 Electroluminescent Devices. 

 

Fig. 2. Energy level diagram for the devices. 

 

 We first examined the use of the polymers as neat emitting layers in polymer light 

emitting diodes (PLEDs) with the structure ITO/PEDOT:PSS (60 nm)/P1-P3/BPhen (40 

nm)/LiF(1 nm)/Al(100 nm), where ITO is indium tin oxide, PEDOT:PSS is poly(3,4-

ethylenedioxy thiophene):poly(4-styrenesulfonate), and BPhen is 4,7-diphenyl-1,10-

phenanthroline. All of the polymers are efficient fluorophores in solution, with quantum 

yields of 0.80, 0.82 and 0.85 for P1, P2, and P3, respectively.  
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Fig. 3. Normalized EL spectra of the OLEDs driven at 57 mA/cm
2
. 

 

 Unfortunately, this fluorescence was quenched in the solid state. Thus no 

electroluminescence (EL) was observed from devices with these polymers as neat 

emitting films. However, since all these polymers have high fluorescence quantum yield 

in solution and good solubility in organic solvents, they were suitable candidates for use 

in guest-host PLEDs.
27

 We therefore evaluated them  as  low  level  dopants  in  poly(N-

vinyl carbazole)  (PVK)-based PLEDs using low molecular weight PVK as the host 

material (average molecular weight: ~50,000~100,000 g/mol). The electroluminescent 

properties of the PLEDs are summarized in Table 3. The structure of the PLEDs was 

ITO/PEDOT:PSS(60 nm)/ PVK:P1-P3/BPhen(40 nm)/LiF(1 nm)/Al(100 nm) (Fig.2). In 

these devices, the benzobisazole terpolymers were blended with PVK at different weight 
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ratios. When the concentration of the conjugated polymers in the blend was increasd, the 

overall performance of the devices decreased. This is especially prominent for polymer 

P1. The highest brightness of the 2 wt. % P1:PVK device was only ~ 60 Cd/m
2
 and the 4 

wt. % P1:PVK device did not light up. Among all the polymers, P3 showed the best 

performance with 1860 Cd/m
2
 at 2 wt.%. The normalized EL spectra of the PLEDs are 

shown in Figure 3. As seen, the intensity of the PVK emission, which peaks at ~420 nm, 

decreased relative to that of the benzobisazole terpolymers emission when the 

concentration of the latter increased. This is particularly notable for the 4 wt % P3:PVK 

PLEDs, where the PVK emission totally vanishes and the P3 emission becomes the only 

emission. This behavior indicates energy transfer from PVK to the benzobisazole 

terpolymers or direct carrier injection to the benzobisazole terpolymers. This reduced 

performance of the polymer is suspected to result from quenching due to aggregation. As 

a result the fluorescence quantum yield is diminished.
28

  

 

Dopant Devicea Von
b 

[V] 

Drive 

Voltage 

[V] 

Current 

Density 
[J, mA/cm2] 

Brightness 
[Cd/m2] 

Efficiency 

[Cd/A, 

(%EQE)c] 

λmax
EL[nm] 

polymer, PVK 

rmax CIE 1931 

[x,y] wt. % 

PVK 0.0 4.4 9.2 303 296 0.44, 0.76 422 0 (0.17, 0.07) 

P1 
1.0 6.0 10.0 205 363 0.52, 0.37 466, 422 4.56 (0.16, 0.19) 

2.0 5.4 8.2 53 68 0.14, 0.09 469  (0.17, 0.20) 

P2 

1.0 4.0 8.6 313 377 0.35, 0.37 461, 421 0.74 (0.17, 0.12) 

2.0 4.6 8.8 454 550 0.29, 0.26 478, 418 0.81 (0.18, 0.17) 

4.0 4.6 8.4 271 362 0.14, 0.10 483, 421 1.46 (0.20, 0.25) 

P3 

1.0 3.8 8.2 220 788 0.76, 0.31 504, 419 2.57 (0.23, 0.40) 

2.0 4.3 8.8 458 1862 0.86, 0.35 504, 418 2.24 (0.23, 0.41) 

4.0 3.7 8.8 864 1077 0.17, 0.06 511  (0.31, 0.58) 

Device type structure: ITO/PEDOT:PSS/PVK: poly(arylenebenzobisazole)s/BPhen/LiF/Al b Turn-on voltage (at which 

EL is 1 Cd/m2). c EQE = external quantum efficiency. 

Table 3. Device characteristics of PLEDs based poly(arylenebenzobisazoles). 

6.4 CONCLUSIONS 

 In conclusion, three new benzobisazole terpolymers containing thiophene and 

fluorene have been synthesized in two steps and in high yields via the Suzuki coupling 

reaction of fluorene with three new thiophene-benzobisazole-thiophene monomers. The 

flexible side chains on the thiophene and fluorene ring resulted in polymer which 

possessed good solubility, while maintaining good thermal stability. Preliminary 

electroluminescence studies showed that these polymers exhibit moderate brightness in 
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guest-host PLEDs. Although these polymers have comparable electron affinity to 

previously synthesized benzobisazole/fluorene copolymers, the incorportaion of the alkyl 

thiophene rings into the polymer backbone proved to be detrimental to the polymers’ 

performance in OLEDs. However, the facile synthetic approach described herein will 

enable the development of new benzobisazole terpolymers with improved properties. The 

synthesis of such materials is currently ongoing in our laboratories.  

6.5 EXPERIMENTAL SECTION 

 The starting materials 2,5-dibromo-3-octylthiophene 1,
15

 4,6-diamino resorcinol 3,
11

 

diaminohydroquinone 4,
18

 diaminobenzene dithiol 5,
12

 and 2,7-bis(4,4,5,5-tetramethyl-

1,3,2-dioxaborolan-2-yl)-9,9-dioctylfluorene 9
19

 were all synthesized according to 

previously reported methods. Tetrahydrofuran was dried using an Innovative 

Technologies solvent purification system. All other compounds were purchased from 

commercial sources and used without further purification. Nuclear magnetic resonance 

spectra were obtained on a 400 MHz spectrometer. All samples were referenced 

internally to the residual protonated solvent. Gel permeation chromatography (GPC) 

measurements were performed on a GPC separation module equipped with four columns 

connected in a series (guard, 10,000 Å, 1,000 Å and 100 Å from American Polymer 

Service Corporation), a refractive index detector and a UV-Vis detector. Analyses were 

performed at 35 °C using chloroform as the eluent with the flow rate at 1.0 mL/min. 

Calibration was based on polystyrene standards. Fluorescence spectroscopy and UV-

Visible spectroscopy were performed using polymer solutions in chloroform, and thin 

films were spun from these solutions. All of the polymers were excited at their respective 

emission maxima. Quantum yield measurements were taken using Rhodamine B (= 

0.65) in 1-hexanol as a standard (excitation at 410 nm; emission was taken from 420-700 

nm).
29

 All values were corrected for the differences in the refractive index of the solvent. 

Thermal gravimetric analysis measurements were performed within the temperature 

interval of 30 ºC - 750 ºC, using a heating rate of 20 ºC/minute under ambient 

atmosphere. Differential scanning calorimetry was performed with a first scan at a 

heating rate of 15 ºC/min to erase thermal history and a second scan to measure 
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transitions from 0 °C to 275 °C under nitrogen. Transitions were also measured with 

cooling at 15 ºC/min. Cyclic voltammograms were performed in 0.1 M 

tetrabutylammonium hexafluorophosphate using 0.01 M AgNO3 in acetonitrile as the 

reference electrode. The potential values obtained versus the Ag
+
 were converted to the 

ferrocene (Fc) reference using it as an internal standard. Ultraviolet Photoelectron 

Spectroscopy measurements were performed using a RKI Instruments Model AC-2 

instrument. The measurements were performed on polymer films. 

 

 2-bromo-3-dodecyl-5-(triethoxymethyl)thiophene (S1). A dry, round bottom flask 

was equipped with a reflux condenser and addition funnel then placed under argon. The 

flask was charged with 60 mL of dry diethyl ether and 2,5-dibromo-3-octylthiophene 

(21.27 g, 60.06 mmol). Isopropyl magnesium chloride (30.1 mL, 60.2 mmol, 2.0 M) was 

then added dropwise to the flask via the addition funnel and the mixture was brought to 

reflux. After an hour, metathesis was completed (monitored by GC/MS), and the reaction 

was cooled to room temperature. Once cool, tetraethyl orthocarbonate (13.86 g, 72.07 

mmol) was added dropwise. The mixture was then heated to reflux and stirred overnight. 

The crude mixture was poured into 200 mL of saturated aqueous ammonium chloride and 

extracted with 3 x 150 mL diethyl ether. The combined organic layers were washed with 

brine and dried over sodium sulfate. The solution was filtered and the filtrate 

concentrated in vacuo. The crude product was purified by Kugel-rohr distillation to yield 

5-bromo-2-triethoxymethyl-3-octylthiophene (17.80 g, 42.24 mmol, 70% yield). 
1
H-

NMR (400 MHz, CDCl3): δ 6.85 (s, 1H), 3.43 (q, 6H), 2.50 (t, 2H) 1.57 (m, 2H), 1.57 

(m, 10H), 1.18 (t, 9H), 0.86 (t, 3H). 
13

C-NMR (100 MHz, CDCl3): δ 141.7, 141.3, 127.6, 

112.8, 109.8, 58.2, 32.0, 29.7, 29.5, 29.4, 29.3, 22.9, 15.0, 14.3. GC/MS (QP, M
+
 for 

C19H33BrO3S): calcd, 420.13; found, 420.35. 

 

 2,6-bis(2-bromo-3-octyl-thiophene-5-yl) benzobis[1,2-d:5,4-d´]bisoxazole 6. 4,6-

Diamino-1,3-dihydroxybenzene bishydrochloride 3 (0.91 g, 4.3 mmol) was placed under 

argon in a dry round bottom flask. To it was added 4 mL anhydrous DMSO and pyridine 

(0.67 g, 8.3 mmol); the mixture was stirred until the solids had all dissolved. Meanwhile, 
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a solution of Yttrium(III) triflate (0.11g, 0.21 mmol) in 4 mL dry THF was prepared and 

heated to 60 °C. The DMSO solution was then transferred dropwise into the THF 

solution. The reaction was stirred at 60 °C overnight. After stirring, the mixture was 

cooled and an excess amount of methanol was added to precipitate any dissolved product. 

The solids were filtered and recrystallized from chloroform and methanol to yield 6 

(89%). Mp. 105 - 106 ºC. 
1
H-NMR (400 MHz, CDCl3): δ 7.80 (s, 2H), 7.62 (s, 2H), 2.62 

(t, 4H) 1.65 (t, 4H), 1.28 (m, 20H), 0.88 (t, 3H). 
13

C-NMR (100 MHz, CDCl3): δ 159.5, 

148.4, 144.1, 140.4, 130.9, 128.8, 115.6, 100.8, 32.1, 29.8, 29.7, 29.6, 29.5, 29.4, 22.9, 

14.3. HRMS (ESI, [M+H]
+
 for C32H38Br2N2O2S2): calcd, 705.815; found, 705.814. 

 

 2,6-bis(2-bromo-3-dodecyl-thiophene-5-yl)benzo[1,2-d;4,5-d']bisoxazole 7. 2,5-

Diamino-1,4-hydroquinone bishydrochloride 4 (0.91 g, 4.3 mmol) was placed under 

Argon in a dry round bottom flask. To it was added 4 mL anhydrous DMSO and pyridine 

(0.67 g, 8.3 mmol) and the mixture was stirred until the solids had all dissolved. 

Meanwhile, a solution of Lanthanum(III) triflate (0.12g, 0.21 mmol) in 4 mL dry THF 

was prepared and heated to 60 °C. The DMSO solution was then transferred dropwise 

into the THF solution. The reaction was stirred at 60 °C overnight. After stirring, the 

mixture was cooled and an excess amount of methanol was added to precipitate any 

dissolved product. The solids were filtered and recrystallized from chloroform and 

methanol to yield 7 (78%). Mp. 148 - 150 ºC. 
1
H-NMR (400 MHz, CDCl3): δ 7.94 (s, 

1H), 7.61 (s, 1H), 2.60 (t, 4H) 1.62 (t, 4H), 1.28 (m, 20H), 0.88 (t, 3H). 
13

C-NMR (100 

MHz, CDCl3): δ 159.0, 148.5, 144.0, 130.8, 128.7, 115.4, 109.6, 93.3, 32.1, 29.8, 29.7, 

29.6, 29.5, 29.4, 22.9, 14.4. HRMS (ESI, [M+H]
+
 for C32H38Br2N2O2S2): calcd, 705.815; 

found, 705.814. 

 

 2,6-bis(2-bromo-3-dodecyl-thiophene-5-yl)benzo[1,2-d;4,5-d']bisthiazole 8. 2,5-

Diamino-1,4-benzenedithiol bishydrochloride 5 (0.91 g, 4.3 mmol) was placed under 

Argon in a dry round bottom flask. To it was added 4 mL anhydrous dimethyl acetamide 

and pyridine (0.67 g, 8.3 mmol) and the mixture was stirred until the solids had all 

dissolved. Meanwhile, a solution of Ytterbiumm(III) triflate (0.13g, 0.21 mmol) in 4 mL 
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dry THF was prepared and heated to 60°C. The DMSO solution was then transferred 

dropwise into the THF solution. The reaction was stirred at 60 °C overnight. After 

stirring, the mixture was cooled and an excess amount of methanol was added to 

precipitate any dissolved product. The solids were filtered and recrystallized from 

chloroform and methanol to yield 8 (84%). Mp. 223 - 224 ºC. 
1
H-NMR (400 MHz, 

CDCl3): δ 8.36 (s, 2H), 7.34 (s, 2H), 2.60 (t, 4H) 1.63 (t, 4H), 1.30 (m, 20H), 0.90 (t, 3H). 

13
C-NMR (100 MHz, CDCl3): δ 161.5, 152.0, 143.8, 136.8, 134.4, 129.7, 115.2, 114.9, 

32.1, 29.9, 29.8, 29.6, 29.5, 29.4, 22.9, 14.3. HRMS (ESI, [M+H]
+
 for C32H38Br2N2S4): 

calcd, 737.0358; found, 737.0357. 

6.5.1 General Methods for Polymer Synthesis.  

 A solution of 70 mg Aliquat 336, one of the monomers [6 (353.3 mg, 0.500 mmol), 7 

(353.3 mg, 0.500 mmol), or 8 (369.4 mg, 0.500 mmol)] and 2,7-bis(pinacolatoboro)-9,9-

dioctylfluorene (321.3 mg, .500 mmol) in 10 mL of toluene was prepared. To this 

solution was added 10 mL of 2M aqueous sodium carbonate. The biphasic system was 

degassed with Argon for 30 mins before adding Pd(PPh3)4 (11.6 mg, 0.010 mmol, 

dissolved in 5 mL degassed toluene). The mixture was heated to reflux and stirred for 4 

days. After 4 days, the organic layer was separated and precipitated in MeOH. The 

polymers were then purified by soxhlet extraction first rinsing with MeOH and hexanes 

before extraction by chloroform. The chloroform was evaporated to yield polymer. 

 P1 (439 mg, 94% yield). 
1
H-NMR (400 MHz, CDCl3): δ 8.04 (s, 1H), 7.8 (m, 5H), 

7.50 (m, 5H), 2.78 (b, 4H), 2.11 (b, 4H), 1.73 (b, 4H),  1.28-1.11 (bm, 40H), 0.88-0.80 

(bm, 16H) 
13

C-NMR (100 MHz, CDCl3): δ160.0, 151.8, 148.7, 144.4, 140.8, 140.4, 

140.3, 132.7, 128.5, 126.7, 123.9, 120.5, 109.3, 93.2, 55.6, 40.7, 32.1, 32.0, 31.1, 30.4, 

29.8, 29.7, 29.6, 29.5, 29.4, 29.3, 24.3, 22.9, 22.8, 14.4, 14.3 

 P2 (410 mg, 88% yield). 
1
H-NMR (400 MHz, CDCl3): δ 7.86 (m, 5H), 7.52 (m, 5H), 

2.79 (b, 4H), 2.11 (b, 4H), 1.73 (b, 4H),  1.30-1.12 (bm, 40H), 0.89-0.83 (bm, 16H)
 13

C-

NMR (100 MHz, CDCl3): δ160.5, 151.9, 148.7, 144.7, 140.9, 140.7, 140.5, 133.0, 132.9, 

128.5, 126.9, 123.9, 120.4, 100.6, 55.7, 40.7, 32.1, 32.0, 31.1, 30.4, 29.8, 29.7, 29.6, 29.5, 

29.4, 29.3, 24.3, 22.9, 22.8, 14.3, 14.2 

 P3 (469 mg, 97% yield). 
1
H-NMR (400 MHz, CDCl3): δ 8.46 (s, 2H), 7.80 (d, 2H), 
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7.61-7.52 (m, 6H), 2.78 (b, 4H), 2.05 (b, 4H), 1.73 (b, 4H),  1.30-1.12 (bm, 40H), 0.90-

0.82 (bm, 16H)
 13

C-NMR (100 MHz, CDCl3): δ162.3, 152.2, 151.9, 143.8, 140.9, 140.4, 

134.9, 134.7, 133.2, 131.8, 128.4, 124.0, 120.4, 115.0, 55.7, 40.7, 32.1, 32.0, 31.1, 30.4, 

29.8, 29.7, 29.6, 29.5, 29.4, 29.3, 24.3, 22.9, 22.8, 14.3, 14.2 

6.5.2 Fabrication and Characterization of PLEDs. 

 PLEDs were fabricated on nominally 20 Ω/square, 140 nm-thick ITO-coated glass 

substrates (Colorado Concept Coatings). The substrates were first cleaned with a 

detergent and organic solvents; they were then treated in a UV/ozone oven to increase the 

work function of the ITO and hence facilitate hole injection, as described elsewhere.
30

 A 

60 nm PEDOT:PSS layer was spin-coated on the ITO and then baked in air at 160 ºC for 

1 hour. Blends of PVK and the poly(arylenebenzobisoxazole) copolymers in 

chlorobenzene solutions were spin-coated on top of the PEDOT:PSS layer in an Ar-filled 

glovebox; the thickness of the poly(arylenebenzobisoxazole) copolymers layers was 30 

nm. The combined concentration of the PVK and polymer dopants was kept constant at 9 

mg/mL; the poly(arylenebenzobisazole)s concentration was varied in the range 0.09 to 

0.36 mg/mL. The solution was spin coated at 4000 rpm for 60 s. The fabricated structure 

was then annealed at 60 °C for 30 min. Following this annealing step, the samples were 

transferred into a thermal evaporator within the glovebox and the BPhen, LiF, and Al 

layers were deposited sequentially by thermal evaporation at a base pressure of ~2×10
-6

 

Torr. The PLEDs were characterized by monitoring their electroluminescence (EL) 

spectra, brightness as a function of the applied voltage, and luminous efficiency. 
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6.8 SUPPORTING INFORMATION 

Figure S1. TGA curves of poly(arylenebenzobisazoles). TGA’s were obtained under N2 

at a heating rate of 15°C/min. 
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Figure S2. DSC curves. 
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Fig S3. XRD. 
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Figure S4. Cyclic voltammetry was performed on thin films of polymers that were drop-

casted onto the ends of 1mm platinum button electrodes using a platinum wire as counter-

electrode and a Ag/Ag
+
 reference electrode. Ferrocene was used as an internal standard. 

Measurements were recorded at a scan rate of 100 mV/s. 
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Figure S5. Differential pulse voltammetry was performed on thin films of polymers that 

were drop-casted onto the ends of 1mm platinum button electrodes using a platinum wire 

as counter-electrode and a Ag/Ag+ reference electrode. Ferrocene was used as an internal 

standard. Measurements were recorded at a scan rate of 100 mV/s with a pulse height of 

100 mV, step width of 50 ms, and pulse time of 25 ms. 
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Figure S6. NMR Spectra.  
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Figure S6 (cont.).
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Figure S6 (cont.). 
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Figure S6 (cont.). 
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Figure S6 (cont.). 
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Figure S6 (cont.). 
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Figure S6 (cont.). 
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Figure S6 (cont.). 
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Figure S6 (cont.). 



www.manaraa.com

 169 

Figure S6 (cont.). 
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Figure S6 (cont.). 
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Figure S6 (cont.). 
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Figure S6 (cont.). 
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Figure S6 (cont.). 
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7.1 ABSTRACT 

  

 Benzobisazoles have long held the interest of researchers for their potential 

applications in organic electronics. Until recently, research has been limited due to the 

difficulty synthesizing and processing these materials. Herein, we report the synthesis of 

six new organic soluble benzobisazole polymers based on dithieno[3,2-b:2´,3´-d]pyrrole 

and dithieno[3,2-b:2´,3´-d]silole. These polymers were characterized and studied for their 

light harvesting and donor abilities in organic solar cells. 

7.2 INTRODUCTION 

 Interest in organic photovoltaic (OPVs) solar cells has grown considerably over the 

past decade.
1-6

 Unlike inorganic materials, organic semiconductors (OSCs) may be tuned 

through organic synthesis. Additionally, OSCs can be processed using solution-based 

techniques, meaning that they can easily be applied continuously and over a large surface 

area.
7, 8

 A promising area of OPV research is in the development of bulk heterojunction 
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solar cells.
9, 10

 The active layer typically consists of a blend containing an electron-

donating conjugated polymer and an electron accepting material, usually a soluble 

fullerene derivative such as PC60BM or PC70BM. By casting the two components 

together in a single layer, the distance an exciton must travel to reach a donor/acceptor 

junction is reduced considerably while still maintaining a thick absorbing layer.
11, 12

 

Currently, one of the most effective strategies to produce useful donor polymers is the 

incorporation of alternating donor and acceptor moieties, resulting in a narrower bandgap 

and better harvest of the solar spectrum.
13-15

 These so-called donor acceptor (D-A) 

copolymers have led to vast improvements in device efficiencies over the past ten years. 

 Our group has been exploring benzo[1,2-d;5,4-d´] bisoxazole (cis-BBO), benzo[1,2-

d;4,5-d´] bisoxazole (trans-BBO), and benzo[1,2-d;4,5-d´] bisthiazole (trans-BBZT) 

units as part of polymers.
16-18

 Inspired by the work of Jenekhe,
19

 our group seeks to 

incorporate these units as the acceptor portion of D-A copolymers for OPVs. Electron 

deficient poly(benzobisazoles) (PBAs) are attractive options for use in organic 

electronics. Benzobisoxazole and benzobisthiazole polymers have excellent thermal 

stability, high electron affinity, and efficient electron transport.
20-26

 They are liquid 

crystalline in concentrated solution, and stack efficiently in the solid-state.
27-31

 

Unfortunately, PBAs are processed under harsh reaction conditions using strong acids 

and high temperatures. These conditions limit the functionality that can be included along 

the backbone of the polymer. Additionally, residual acid from casting can serve to 

unintentionally dope the resultant polymer.
25, 28, 29, 32-38

 

 To circumvent this, we developed synthesis conditions for cis-BBO, trans-BBO, and 

trans-BBZT that use orthoesters in mild condensation reactions.
39, 40

 This has allowed us 

to fabricate functional building blocks for conjugated polymers in high yields. The 

inclusion of alkyl chains as part of these polymers allows for solubility in common 

laboratory solvents like THF, chloroform, or 1,2-dichlorobenzene. We have recently 

reported the synthesis of PBAs for use in OPVs and OLEDs.
16, 17, 41

 These, along with 

Jenekhe’s report, represent the first examples of efficient devices constructed from 

organic soluble PBAs. Herein we report the synthesis of six new D-A copolymers 

incorporating cisBBO, transBBO and BBZT acceptors as part of their main chain. We 
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seek an understanding of the differences among the three isomers as well as how 

changing the comonomer affects the optoelectronic and morphological characteristics of 

these materials. 

 We chose two heterocyclic bithiophenes as comonomers – dithienosilole (DTS) and 

dithienopyrrole (DTP). These monomers were chosen for several reasons, among them 

their fused-ring bithiophene structure (increasing conjugation), good performance records 

in devices, and solubilizing side chains.
42

 

 DTP is a particularly electron rich heterocycle
43, 44

 Therefore, its incorporation into 

conjugated polymers leads to high-lying HOMOs,
45-47

 which can reduce the open-circuit 

voltage (Voc),
48-51

 though this is not always the case.
50, 52-54

 However, DTP-containing 

polymers are known for their narrow bandgaps and high mobilities.
45, 46, 55

 McCullough et 

al. synthesized what they referred to as “transistor paint.”
56

 They reported mobilities as 

high as 0.14 cm
2
 V

-1
 s

-1
. In addition to this, the polymers were air-stable, with device 

performance after 60 days being nearly indistinguishable from initial device performance. 

DTP has seen success in D-A copolymers as part of solar cells, as well, and we wish to 

add to the research into this heterocycle.
48-50, 53, 54

 

  DTS is a versatile heterocyclic bithiophene that has exhibited desirable electronic 

properties in its polymers, including ambipolar transport capabilities and oxidative 

stability.
57-60

 Although the silicon is σ-bonded to the bithiophene, its σ*-orbital is able to 

interact with the π*-orbital of the bithiophene, giving a conjugated, planar system.
61-63

 

DTS has a lower-lying LUMO and HOMO in respect to other heterocyclic bithiophenes, 

along with a decreased bandgap.
64, 65

 This makes it an ideal donor unit in D-A 

copolymers. The low-lying energy levels and decreased bandgap are able to produce 

polymers with high Voc’s and excellent solar spectrum overlap.
53, 66-71

 Of particular note 

is the 7.3% power conversion efficiency reported by Chu et al. for an OPV based on a 

DTS/thienopyrrole-4,6-dione copolymer.
66

 Part of the reason for the excellent 

performance of DTS solar cells has been attributed to the long C-Si bonds, which move 

the alkyl chains away from the ring system, and allowing for ordered stacking.
67, 72

 

Reynolds et al. successfully expanded upon this idea to create dithienogermole units for 

OPVs.
67
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7.3 RESULTS AND DISCUSSION 

7.3.1 Synthesis and Physical Properties 

 The DTP comonomer was synthesized according to Scheme 1, using the procedure 

developed by Samyn and co-workers, starting from 3,3’-dibromo-2,2’-bithiophene.
73

 

Making the Stille reagent by deprotonating unsubstituted DTP using tBuLi at -78°C 

proved to be particularly difficult, giving widely varying yields and producing impure 

product. This is attributed to the instability and insolubility of the dianion, especially at 

cold temperatures.
44

 However, Rasmussen et al. recently reported a new synthesis of a 

DTP bisstannane using a mixture of TMEDA and nBuLi at 0°C.
74

 It is thought that the 

warmer temperatures aid in the deprotonation, while the TMEDA helps to keep the 

dianion solubilized through favorable interactions with the lithiated DTP. This procedure 

consistently produced the DTP Stille reagent in high yields.  

 

Scheme 1. Synthesis of DTP comonomer. 

 The DTS Stille reagent can also be synthesized starting from 3, 3’-dibromo-2, 2’-

bithiophene.
60, 75, 76

 However, Yang’s group reported inconsistencies in the yields using 

this procedure.
71

 Trusting his results, the synthesis of DTS was accomplished according 

to the method of Ohshita, whereby 3,3’-dibromo-5,5’-trimethylsilyl-2,2’-bithiophene is 

used as the starting material.
63, 76

 The full synthesis for this compound was adapted from 

literature and can be found elsewhere.
71, 77, 78
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Scheme 2. Synthesis of polymers using palladium catalyzed Stille couplings. 

 

 Using the DTP and DTS reagents, Stille polycondensations
79

 were conducted 

utilizing benzobisazoles 1-3 as comonomers as to yield PS1-3
78

 and PN1-3
74

 (Scheme 2). 

The details of our synthetic methods may be found in the experimental section of the 

supporting information. All of the polymers were purified by Soxhlet extraction and 

analyzed by gel permeation chromatography (GPC). All of the relevant physical data can 

be found in Table 1. PS1-3 are polymers with significantly higher molecular weights than 

PN1-3, although their polydispersity is also much higher. One group suggested that their 

DTP thiophene benzothiadiazole polymers could be sticking to the polystyrene gels of the 

GPC columns.
48

 They managed to generate data only through the use of 0.5% H3PO4 in 

THF as eluent. The low molecular weight of PN3, at least, may be accounted for by its 

insolubility as there was still a significant portion of insoluble material left in the Soxhlet 

thimble after extraction. Judging from our previous work, the trans-BBZT polymers tend 

to possess the lowest molecular weights. PN1 and PN2 did not produce insoluble 
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material, suggesting that given proper conditions, they may be able to reach higher 

molecular weights. It should be noted that synthesis conditions for PS1-3 took only 16 

hrs to produce polymer as compared to 4 days for the PN1-3. However, when PN1 was 

synthesized according to the same conditions as PS1-3, it yielded the same results as the 

original conditions. No further exploration of synthesis was conducted for these 

polymers.  

 Thermal stability and phase transitions were measured with thermal gravimetric 

analysis (TGA) and differential scanning calorimetry (DSC), respectively. The polymers 

all exhibit thermal stability up to 300°C and above. However, not all of the polymers 

possessed observable glass transition and/or melting temperatures. The polymers 

dissolved readily in 1,2-dichlorobenzene (DCB), chloroform, and THF. NMRs of the 

polymers matched well with the structures and can be found in the supporting 

information. 

.  

Polymer Mw
a 

Mw/Mn Td (ºC) 
b
 Tg/ Tm (ºC) 

PN1 8319 1.34 333 217 

PN2 7969 1.44 331 N/A 

PN3 7216 1.21 299 N/A 

PS1 23997 2.23  211 

PS2 36146 2.95 326 103 

PS3 24605 2.74 309 112 

a Molecular weights and polydispersity indexes determined by GPC versus polystyrene standards using THF as the 

eluent. b Temperature at which 5% weight loss is observed by TGA under N2 with a heating rate of 20 ºC/min. 

Table 1. Molecular weights and thermal properties of PP1-3 and PS-1. 
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7.3.2 Optical Properties 

 
Figure 1. UV/Vis (solid lines) and Fluorescence (dotted lines) data for PN1, PN2, PN3, PS1, PS2 and PS3 

in solution (a and b) and as thin films (c and d) 

 

 The optical properties of the polymers were measured using UV/Vis absorbance 

spectroscopy and fluorescence spectroscopy in both solution and solid state (Figure 1). 

The relevant data is reported in Table 2. In general, the DTP polymers were more 

redshifted in both absorbance and fluorescence than the corresponding DTS polymers. 

This is due to the stronger donor ability and lower ionization potential that DTP 

contributes to the polymer systems. Consequently, PN1-3 also have lower bandgaps than 

PS1-3. 

 In order to calculate the bandgaps of these materials, the intersection of the UV-Vis 

with the fluorescence spectrum in the solid state was used in lieu of the absorption onset. 

We feel that the lack of a standard method for obtaining the so-called onset can produce 

misleading results. The intersection makes a good standard as it represents the 0-0 

transition from the lowest vibronic ground state to the first excited state and is an energy 
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transition shared by both the fluorescence and absorbance for any molecule or polymer.
80

 

The optical bandgaps become smaller as one goes from cis-BBO to trans-BBO to trans-

BBZT for each DTX comonomer. This is a trend that we have noticed in all of our 

previous work.
16-18, 39, 40

 However, the 
abs

max for PN1 and PS1 (cis-BBO) does not follow 

this trend as it has in our previous work. This value should intuitively be the bluest, and 

indeed, the 
em

max for the polymers follow this trend. The solutions for absorbance 

measurements were dilute solutions that were sonicated and filtered to prevent 

aggregation. Therefore, the reason for the red-shift in the bulk of the absorbance of the 

cis isomers most likely has something to do with the symmetry of cis-BBO and/or the 

presence of strong donor groups. More research is needed to determine the precise cause. 

 

 Solution Film  

Polymer 
abs

max

(nm) 


em

max 

(nm) 


abs

max 

(nm) 


em

max 

(nm)
 

   

Eg
opt 

(eV)
a
 

   

Eonset
ox  

(eV)
b
 

   

Eonset
red

 
(eV)

 b
 

HOMO
 

(eV)
c
 

LUMO
 

(eV)
d
 

elec

gE

(eV)
e
 

PN1 521 566 531 625 2.07 0.2 -1.9 -5.0 -2.9 2.1 

PN2 514 579 545 645 2.02 0.1 -1.9 -4.9 -2.9 2.0 

PN3 544 607 567 663 1.94 0.1 -1.8 -4.9 -3.0 1.9 

PS1 483 562 521 640 2.12 0.4 -1.9 -5.2 -2.9 2.3 

PS2 463 575 497 628 2.07 0.3 -1.8 -5.1 -3.0 2.1 

PS3 479 594 476 640 2.05 0.4 -1.7 -5.2 -3.1 2.1 

a Estimated from the optical absorption edge.. 
b Onset of potentials (vs Fc). c HOMO= -(

   

Eonset
ox

 + 4.8) (eV). d LUMO = -

(

   

Eonset
red

 + 4.8) (eV). e elec

gE = LUMO-HOMO 

Table 2. Electronic and Optical Properties of DA poly(arylenebenzobisazoles). 

 

 In the solid state, both the absorbance and fluorescence spectra are redshifted and 

slightly broadened relative to the solution phase. The appearance of a shoulder on the red 

side of the absorbance spectrum is noticeable for PN1-3. For PS2 and PS3, the 

absorbance spectra are significantly broadened. PS1, however, develops more defined 

peak shapes. The fluorescence spectra of the polymers are characterized by a main peak 

and a shoulder in both solution and film with broadening similar to what is seen with the 

absorbance. This is most likely caused by increased interchain interactions and π-stacking 

in the solid state.
81

  

 PN1-3 showed significantly weaker fluorescence than PS1-3. This suggests that 
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interchain interactions are stronger in the DTP polymers relative to the DTS polymers. 

One reason for this could be because the alkyl chains on DTS are orthogonal to the plane 

of the polymer, similar to what is found in poly(fluorene).
72, 82, 83

 Another interesting 

feature is the large red shift in the film fluorescence versus the solution fluorescence 

associated with PS1 (80 nm vs. 45-60nm for the other polymers). The extra features 

found in PS1’s absorbance and fluorescence spectra in the film warrant further 

investigation by solid state characterization methods such as X-ray, TEM, or AFM. 

7.3.3 Electronic Properties 

 
Figure 2. Reduction (left) and oxidation (right) cyclic voltammograms for PN1, PN2, 

PN3, PS1, PS2 and PS3. 

 

 The electronic energy levels of the polymer were estimated using cyclic voltammetry 

(CV) with ferrocene as an internal standard (Figure 2). All of the waves show some level 
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of reversibility, though none appear to be fully reversible. The HOMO and LUMO levels 

were calculated using the onsets obtained from the oxidation and reduction waves, 

respectively (Table 2). The electrochemical bandgaps calculated from these waves match 

well with the optical bandgaps.  

 Recent reports on the accuracy of HOMO and LUMO values obtained from CV 

suggest the ferrocene couple is approximately -5.1 eV relative to vacuum.
67, 84

 However, 

the value of -4.8 eV is commonly used. In an earlier study, we compared values obtained 

by ultraviolet photoelectron spectroscopy (UPS), an absolute measurement, with those 

obtained by CV.
41

 Judging from the results, it appears that -4.8 eV was a more accurate 

determining value than -5.1 eV for unknown reasons. Since we obtained better results 

using -4.8 eV, the values reported herein are calculated using that value.  

 From the electronic measurements obtained from CVs, one can see that the values of 

the LUMO decrease in going from cis-BBO to trans-BBO to trans-BBZT. The LUMO 

levels for all the polymers are approximately -3 eV relative to vacuum with the LUMOs 

from PS1-3 being slightly lower than PN1-3. This is consistent with DTS being a better 

acceptor than DTP.
57, 61

 The LUMO values are determined by the benzobisazole unit and 

these values are consistent with those obtained in our other published work. The HOMO 

level, however, is then determined by the donor DTS or DTP, with DTP polymers having 

higher HOMO levels, in general. The reason for the reduced bandgaps in PN1-3 is 

therefore due primarily to higher HOMO levels.  

 From these results, and from previous reports, benzobisazoles appear to only have 

weak acceptor properties. The bandgaps and LUMO levels (even when adjusted for 

differences in CV calibration methods) attained in other D-A conjugated polymers are 

much lower than those we have obtained.
41, 49, 53, 59, 68

 Unfortunately, this moves the 

LUMO away from the common OPV acceptor fullerenes (PC60BM or PC70BM). 

However, with high LUMO levels and good donor properties, there is promise for the use 

of these polymers in conjunction with narrow bandgap, low LUMO D-A polymers in all 

polymer solar cells.
54

 

7.3.4 Organic Photovoltaic Devices  

 We evaluated our polymers as absorbers and donor materials in OPV devices under 
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illumination of 100 mW/cm
2
. The results are summarized in Table 3. PC70BM has 

recently become a popular acceptor owing to its ability to increase charge 

photogeneration by absorbing a portion of the blue part of the spectrum.
85

 This effect 

does not, however, serve to improve the performance of the polymer in a solar cell. Since 

the polymers reported herein, specifically PS1-3, absorb in the blue region of the 

spectrum, unlike many donor materials (e.g. P3HT), PC60BM was used in the blends. 

 

Polymer Jsc (mA/cm
2
) Voc (V)

 
FF% PCE% 

PN1  1.54 0.54 20 0.17 

PN2 1.81 0.52 25 0.24 

PS1 3.01 0.66 31 0.63 

PS2 1.73 0.73 26 0.33 

PS3 0.21 0.65 24 0.03 

Table 3. Photovoltaic data for the polymers. 

  

  The polymers exhibited mediocre performances with PS1 giving the best PCE. 

However, these efficiencies are improved relative to our work using 

poly(thiophenevinylene-alt-benzobisoxazoles). This may, in part, be due to the 

delocalization of both HOMO and LUMO levels (see Figure S6), a feature that was not 

present in the polymers from earlier research.
16

 Interestingly, the worst performers were 

the trans-BBZT polymers, with PN3 producing no observable photocurrent. When a -1.0 

V bias voltage was applied to operating devices, the external quantum efficiency was 

improved considerably, especially in the devices made with DTP containing polymers 

(see Figure S3). This suggests that excitons are becoming trapped and not dissociating at 

the D-A interface. 

 We theorize that insufficient blending of the donor and acceptor phases is partly 

responsible for the poor performances of these polymers. The placement of side chains on 

the thiophene units that face outwards towards the donor (Scheme 2) as opposed to 

inwards toward the benzobisazole
19

 may be having a negative impact on nanoscale 

morphology and electronics, especially blended systems.
86-88

 Benzobisazole units are 
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very efficient at stacking with each other,
17, 81, 89

 and the high electron-poor nitrogen 

content may make interaction with the acceptor phase unfavorable. Facing side chains 

inwards toward the benzobisazole may help to alleviate these problems. 

7.4 CONCLUSIONS 

 In conclusion, six new, organic soluble polymers based on benzobisoxazole and 

benzbobisthiazole have been synthesized and tested as donor materials in OPV devices. 

Even though the polymers exhibited only modest performance in solar cells, the 

positioning and branching of side chains may be modified to potentially improve the 

photovoltaic device performance of these polymers. The high LUMO levels, while still 

maintaining good electrochemical reversibility, indicate benzobisazole polymers may be 

suitable for all polymer solar cells. In addition, solvent additives or device structure may 

be altered to improve performance. These polymers prove that benzobisazole polymers 

are promising for OPVs, but that more research needs to be done in both synthesis and 

device construction. 
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7.6 EXPERIMENTAL 

 2,6-bis(2-bromo-3-octyl-thiophene-5-yl) benzobis[1,2-d:5,4-d´]bisoxazole, 2,6-bis(2-

bromo-3-dodecyl-thiophene-5-yl)benzo[1,2-d;4,5-d']bisoxazole and 2,6-bis(2-bromo-3-

dodecyl-thiophene-5-yl)benzo[1,2-d;4,5-d']bisthiazole were synthesized according to 

previously published results. 3,3’-dibromo-5,5’-trimethylsilyl-2,2’-bithiophene,
71

  and 

3,3’-dibromo-2,2’-bithiophene
90

 were synthesized according to literature procedures, 

starting from commercially available 2-bromothiophene. The synthesis of 2,6-dibromo-

4,4-dioctyl-4H-silolo[3,2-b:4,5-b']dithiophene was adapted from Yang et al.,
71, 78

 while 
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the synthesis of 4,4-dioctyl-2,6-bis(trimethylstannyl)-4H-silolo[3,2-b:4,5-b']dithiophene 

was synthesized from the previous compound according to Beaujuge et al.
59

   

Tetrahydrofuran and toluene were dried using an Innovative Technologies solvent 

purification system. All other compounds were purchased from commercial sources and 

used without further purification. Nuclear magnetic resonance spectra were obtained on a 

400 MHz spectrometer. All samples were referenced internally to the residual protonated 

solvent. Gel permeation chromatography (GPC) measurements were performed on a 

Viscotek GPC Max 280 separation module equipped with four 5μm I-gel columns 

connected in series (guard, 10,000 Å, 1,000 Å and 100 Å), a refractive index detector and 

a UV-Vis detector. Analyses were performed at 35 °C using THF as the eluent with the 

flow rate at 1.0 mL/min. Calibration was based on polystyrene standards. Fluorescence 

spectroscopy and UV-Visible spectroscopy were performed using dilute polymer 

solutions in chloroform, and thin films were spun from DCB after being filtered through 

Whatman GTX 0.2 μm filters. All of the polymers were excited at their respective 

emission maxima. Thermal gravimetric analysis measurements were performed within 

the temperature interval of 30 ºC - 850 ºC, using a heating rate of 20 ºC/minute under 

ambient atmosphere. Differential scanning calorimetry was performed with a first scan at 

a heating rate of 15 ºC/min to erase thermal history and a second scan to measure 

transitions from 0 °C to 275 °C under nitrogen. Transitions were also measured with 

cooling at 15 ºC/min. Cyclic voltammograms were performed in 0.1 M 

tetrabutylammonium hexafluorophosphate using 0.01 M AgNO3 in acetonitrile as the 

reference electrode with a platinum wire counter electrode. The potential values obtained 

versus the Ag
+
 were converted to the ferrocene (Fc) reference using an internal standard. 

The measurements were performed on polymer films drop cast onto 1 mm platinum 

button electrodes. 

 

 N-(2-octyldodecyl)-phthalimide. Triphenylphosphine (7.87 g, 30.0 mmol), 

phthalimide (4.41 g, 30.0 mmol), and 2-octyldodecanol (8.84 g, 30.0 mmol) were 

dissolved in 30 mL dry diethyl ether and cooled in an ice bath. 

Diisopropylazodicarboxylate (6.07 g (95%), 30.0 mmol, dissolved in 15 mL dry diethyl 
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ether) was then added dropwise. After the addition was complete, the ice bath was 

removed and the reaction was stirred at room temperature overnight. The precipitates 

were filtered, the solvent was removed by rotary evaporation, and the product was 

purified by column chromatography using 4:1 hexanes to diethyl ether as eluent to yield 

pure product (10.11 g, 80%). 
1
H NMR (400 MHz, CDCl3) δ 7.82 (m, 2H), 7.69 (m, 2H), 

3.56 (d, J=7.2 Hz, 2H), 1.86 (b, 1H), 1.25 (b, 32H), 0.86 (m, 6H). 13
C NMR (100 MHz, 

CDCl3) δ 168.86, 133.96, 132.32, 123.31, 42.49, 37.20, 32.11, 32.08, 31.67, 30.15, 29.82, 

29.79, 29.74, 29.53, 29.48, 26.48, 22.88, 22.86, 14.31, 14.30. 

 

 2-octyldodecylamine. N-(2-octyldodecyl)-phthalimide (10.11 g, 23.6 mmol) was 

dissolved in 50 mL of absolute ethanol. To this was added hydrazine (55% in water, 4.0 

mL, 71 mmol) and the mixture was heated to reflux overnight. Hydrochloric acid was 

then added (6M, 70 mL), followed by 20 mL ethanol, and the reaction was refluxed for 

an additional 2 hours. The reaction was cooled, the precipitates were filtered, and the 

solvent was removed under vacuum to yield pure 2-octyldodecylamine (6.06 g, 86%). 
1
H 

NMR (400 MHz, CDCl3) δ 2.56 (d, 2H), 1.36 (b, 1H), 1.23 (b, 33H), 0.85 (m, 6H). 

13
C NMR (100 MHz, CDCl3) δ 45.33, 40.96, 32.10, 32.09, 31.70, 30.28, 29.86, 29.82, 

29.53, 26.95, 22.86, 14.27. 

 

 N-(2-octyldodecyl)dithieno[3,2-b:2´,3´-d]pyrrole. 3,3´-dibromo-2,2´-bithiophene 

(1.62 g, 5.00 mmol) was dissolved in 10 mL toluene and purged with argon for 20 

minutes. To this solution was added bispalladium trisbenzylideneacetone (0.13g, .15 

mmol), BINAP (0.31 g, .50 mmol) and sodium t-butoxide (1.15 g, 12.0 mmol). The 

solution was further purged with argon for another 10 minutes and heated to 35°C before 

adding 2-octyldecylamine (1.49 g, 5.00 mmol) in one portion. The reaction mix was 

refluxed for 16 hours (monitored by TLC for disappearance of the bithiophene). The 

reaction was cooled, water (~15mL) was added, and the mixture extracted with 2x100 

mL diethyl ether. The ether layers are combined and washed with brine and dried over 

anhydrous sodium sulfate. Solvent is removed under vacuum and the crude product is 

purified by column chromatography using 9:1 hexane: methylene chloride to yield 1.97 g 
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(2.35 mmol) of N-(2-decyltetradecyl)dithieno[3,2-b:2´,3´-d]pyrrole (86%). 
1
H NMR (400 

MHz, CDCl3) δ 7.12 (d, J=5.2 Hz, 2H), 6.98 (d, J=5.3 Hz, 2H), 4.05 (d, 2H), 2.01 (b, 

1H), 1.27 (b, 32H), 0.90 (m, 6H). 13
C NMR (100 MHz, CDCl3) δ 145.49, 122.85, 114.73, 

111.28, 51.92, 39.26, 32.14, 32.09, 31.80, 30.09, 29.83, 29.82, 29.77, 29.72, 29.56, 29.48, 

26.64, 22.92, 22.89, 14.36, 14.35. 

 

 N-(2-octyldodecyl)-2,6-bis(trimethylstannyl)dithieno[3,2-b:2′,3′-d]pyrrole. In a 

typical procedure, N-(2-octyldodecyl)dithieno[3,2-b:2´,3´-d]pyrrole (0.63 g, 0.75 mmol) 

was dissolved in 40 mL dry hexane. The solution was cooled to 0°C in an ice bath and to 

it was added TMEDA (0.261g, .225 mmol). After 5 mins of stirring, nBuLi (2.5 M in 

hexane, 0.90 mL, 2.25 mmol) was added dropwise and stirred for 2 hours before adding 

trimethyltin chloride (1.0 M in THF, 2.25 mL, 2.25 mmol) in one portion. The solution 

was stirred overnight before washing with water and brine and extracting with additional 

hexanes. The hexane layer was dried over sodium sulfate before evaporating the solvent 

to yield light brown syrupy liquid as the product (0.52 g, 88%). 
1
H NMR (400 MHz, 

CDCl3) δ 6.96 (s, 2H), 4.04 (d, 2H), 2.01 (b, 1H), 1.24 (b, 32H), 0.88 (m, 6H), 0.40 (s, 

18H). 13
C NMR (100 MHz, CDCl3) δ 148.49, 135.68, 120.32, 118.26, 51.74, 39.15, 

32.14, 31.65, 30.20, 29.92, 29.89, 29.83, 29.58, 26.53, 22.92, 22.90, 14.35, -7.91. 

 

 PN1. N-(2-octyldodecyl)-2,6-bis(trimethylstannyl)dithieno[3,2-b:2′,3′-d]pyrrole 

(0.52 g, 0.66 mmol) and 1 (0.47 mg, 0.66 mmol), bispalladium trisbenzylideneacetone 

(12 mg, .013 mmol, 2% catalyst) and tri(o-tolyl)phosphine (16 mg, .051 mmol, 8% 

ligand) were dissolved in 12 mL dry, deoxygenated toluene. The solution was purged 

with argon gas for 10 more minutes before heating to 95°C. After 4 days, the reaction 

was cooled to room temperature and poured into methanol with 5% conc. HCl. The 

resultant precipitate was purified by Soxhlet extraction using methanol, acetone and 

hexanes. Finally, chloroform was used to extract the highest molecular weight material. 

The solvent was removed to yield PN1 as a black, lustrous solid (0.58 g, 87%). 
1
H-NMR 

(400 MHz, CDCl3): δ 7.65-6.68 (b, 6H), 3.93 (b, 2H), 2.76 (b, 4H), 1.25 (bm, 69H).   

 PN2. This was prepared in the same manner as PN1, using 0.64 mmol of starting 
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material to yield a plastic-like solid (0.43 g, 67%). 
1
H-NMR (400 MHz, CDCl3): δ

 
7.70-

6.67 (b, 6H), 3.98 (b, 2H), 2.74 (b, 4H), 1.25 (bm, 69H). 

 PN3. This was prepared in the same manner as PN1, using 0.40 mmol of starting 

material to yield lustrous solid (0.20 g, 49%). 
1
H-NMR (400 MHz, CDCl3): δ 

 

 PS1. 4,4-dioctyl-2,6-bis(trimethylstannyl)-4H-silolo[3,2-b:4,5-b']dithiophene (0.52 

g, 0.70 mmol) and 1 (0.47g, 0.67 mmol) were dissolved in 12 mL dry, deoxygenated 

toluene. The solution was purged for 20 minutes with argon before adding palladium 

tetrakis(triphenyl)phosphine (19 mg, .016 mmol). After the addition, the solution was 

purged for an additional 20 minutes with argon then heated to reflux and stirred overnight 

(16 hours). The reaction was cooled and precipitated into methanol. The solid was 

subjected to Soxhlet extraction using methanol, acetone and hexane. Finally, the highest 

soluble molecular weight fraction was removed by chloroform. The chloroform was 

removed to yield a red, plastic solid (0.21 g, 33%). 
1
H-NMR (400 MHz, CDCl3): δ 7.92-

7.19 (b, 6H), 2.81 (b, 4H), 1.30 (b, 64H).  

 PS2. Prepared in the same manner as PS1 to yield a red solid (0.26 g, 40%) 
1
H-NMR 

(400 MHz, CDCl3): δ 7.77-7.20 (b, 6H), 2.86 (b, 4H), 1.27 (bm, 64H). 

 PS3. Prepared in the same manner as PS1 to yield a black-red solid (0.24 g, 38%). 

1
H-NMR (400 MHz, CDCl3): δ 8.36 (b, 2H), 7.48-7.21(b, 4H), 2.79 (b, 4H), 1.32 (bm, 

64H). 
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7.8 SUPPORTING INFORMATION 

Figure S1. Current-Voltage Curves. 
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Figure S2. Absolute EQE with Absorbance Overlaid. 
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Figure S3. EQE was taken for both a device with no bias and a device with a -1 V 

applied bias. The ratio of the two devices indicates how much the extra electric field aids 

the separation of charges. 
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Figure S4. TGA Curves. 
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Figure S5. DSC Curves. 
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Figure S5 (cont.). 
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Figure S5 (cont.). 
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Figure S6. All of the calculations on the model oligomers were studied using the 

Gaussian 03W program package with the GaussView 4 GUI interface program package. 

Electrostatic potential maps were created using a coarse setting and an isovalue of 0.03. 

The calculations were performed on one repeat unit of PN1 and PN2. 
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Figure S7. NMR Spectra 
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Figure S7 (cont.). 
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Figure S7 (cont.). 
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Figure S7 (cont.). 
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Figure S7 (cont.). 
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Figure S7 (cont.). 
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Figure S7 (cont.). 
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Figure S7 (cont.). 
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Figure S7 (cont.). 
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Figure S7 (cont.). 
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Figure S7 (cont.). 
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Figure S7 (cont.). 
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Figure S7 (cont.). 
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Figure S7 (cont.). 
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Chapter 8 

 

General Conclusions 

 

 

8.1 POSITIONAL FUNCTIONALIZATION 

 

 

Scheme 1. Functionalization of the 4,8 positions on benzobis[1,2-d;4,5-d´]oxazole. 

 

 One of the major issues facing the synthesis of these benzobisazole polymers has 

been poor solubility. If alkyl chains could be added to the benzobisazole unit, then 

solubility and molecular weights could be improved. There is currently ongoing research 

in our group emphasizing functionalization of the 4,8 position of benzobis[1,2-d;4,5-

d´]oxazole (Scheme 1). With bromine handles, the position has been functionalized with 

aryl groups and alkynyl groups using Suzuki and Sonogashira couplings. These groups 

can bear alkyl chains for improving solubility. The added functionality and variety of 

potential aryl and alkynyl groups also allows for electronic tuning. In addition to this, 

polymerization can be done along the 4,8-axis as opposed to the traditional 2,6-axis. This 

is also an excellent example of tuning electronic material properties using organic 

synthesis. Preliminary results are very promising and publication is forthwith. 

 Our other efforts to functionalize benzobisazoles focus on new orthoesters in order to 
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substitute at the 2,6-position beyond what has already been published. Unfortunately, the 

synthesis and subsequent purification of orthoesters is not a trivial matter. The primary 

route to functional orthoesters that we have already used in published work involves the 

reaction of a Grignard reagent with tetraethyl orthocarbonate. Unfortunately, producing 

Grignard reagents from some heterocycles works poorly or not at all, nor does this 

method produce pure enough product to use outright. Purification of orthoesters is 

difficult to perform as the orthoesters functionality is acid and moisture sensitive. 

Purification on an untreated silica column results in decomposition; even when the 

column is treated with triethylamine, some decomposition occurs. Alumina columns 

work, but so far produce inconsistent low to mediocre yields. The only reliable way to 

purify these orthoesters so far has been vacuum distillation. In this way, high yields of 

orthoesters have been produced. Unfortunately, the size of molecule that can be distilled 

even under vacuum is limited.  

 

  

Scheme 2. Alternative synthesis of an orthoesters. 

 

 For this reason, new methods for orthoesters synthesis and functionalization are 

being developed in our labs (Scheme 2). Starting from aldehydes, 1,3-propanedithiol (or 

a similar dithiol) may be used to produce a cyclic dithiane. The dithiane can then be 

deprotonated with a lithium base and reacted with a disulfide nucleophile to produce the 

thioorthoester. The thioethers can then be exchanged with ethanol in a complexation 

reaction with collidine and silver ions to form the triethyl orthoesters. The advantages of 
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this method are the very mild conditions, allowing for synthesis of a large number of 

orthoesters from materials that normally don’t metallate well. 

 

 

Scheme 3. Zincation and cross-coupling of benzobis[1,2-d;4,5-d´]oxazole. 

 

 Another promising method of 2,6-functionalization involves direct C-H activation of 

the benzobisazole. Several experiments have been tried using copper and/or palladium 

and any number of different bases, but success has been nonexistant. However, the most 

promising method involves zincation of the 2,6-position using a mixture of lithium 

tetamethyl piperidine and zinc chloride tetramethyl ethylenediamine (Scheme 3).  The 

metallated benzobisoxazole was then reacted with phenyl iodide using palladium in 

Negishi-type coupling. The 30% yield of product is low, but perhaps conditions could be 

improved. The advantage of this method is the lack of a need for orthoesters and the 

sheer number of possible metal-catalyzed cross-couplings with aryl halides, with the 

potential for direct polymerization as well. 

8.2 SYNTHESIS OF BENZO[1,2-D;5,4-D´] BISTHIAZOLE 

 

 

Scheme 4. Possible synthetic routes to 4,6-diamino-1,3-benzenedithiol bishydrochloride. 

The unprotonated compound is most likely very unstable. 
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 The two benzobisoxazole units, benzo[1,2-d;5,4-d´] bisoxazole and benzo[1,2-d;4,5-

d´] bisoxazole are both easy to make and comparisons can be made between the two to 

see how positional isomerism affects the electronic properties. However, only benzo[1,2-

d;4,5-d´] bisoxazole has an analogous sulfur analogue that can be synthesized currently. 

The sulfur analogue of benzo[1,2-d;5,4-d´] bisoxazole, benzo[1,2-d;5,4-d´] bisthiazole, 

has posed a major challenge to synthesize. Past efforts undertaken in our labs to 

synthesize the diaminodithiobenzene precursor are highlighted in Scheme 4, but all have 

failed to produce results. Unfortunately, there are very few literature reports on this 

compound, they are all very old, and new synthetic routes will most like have to be 

devised. The routes highlighted above are by no means exhaustive, and  

8.3 SMALL MOLECULES 

 

Scheme 5. The synthesis of various dyes using “aldol” condensation with an aldehyde. 

 

 In addition to being able to craft polymers from benzobisazoles, our group has 

explored the synthesis of small molecule dyes (Scheme 5). Work is currently focused on 

producing both simple dyes without much functionality to asymmetric dyes possessing 

added functionality in order to bind a metal or provide a handle for post-translational 

modification. The monomer units discussed in Chapters 6 and 7 are examples of small 
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molecule dyes. By altering the 4,8- and/or 2,6- substitution pattern  on benzbobisazoles, 

basic conclusions can be drawn about how different functionalities affect the properties 

of a material. These conclusions provide guidance for future molecular designs. Many 

dyes are also easier to fabricate and purify than conjugated polymers. Although there are 

no immediate plans to incorporate these dyes into devices, they are promising materials 

for monomers, sensors, sensitizers, and non-linear optics. 

 

 In conclusion, benzobisazoles have been proven useful synthons for incorporation 

into organic molecules for semiconducting applications. Red shifts in the absorbance and 

fluorescence spectra can be seen on going from cisBBO to transBBO to BBZT 

containing polymers. The same general trend can be observed in decreasing LUMO 

levels for these systems. Another general trend that has been observed going from 

cisBBO to transBBO to BBZT is the increase in solid state order. Benzobisazoles are 

weak acceptors, but their charge transport properties and stable structures make them 

promising for future applications. The work on these moieties, although it is backed up 

by three decades of research, is still in its early phases. Continued research on 

benzobisazoles will undoubtedly yield interesting, if not useful, results into dynamic 

structure-function relationships. 
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